General Relativity and Gravitation

, Volume 40, Issue 2–3, pp 357–420 | Cite as

Extended theories of gravity and their cosmological and astrophysical applications

Research Article

Abstract

Astrophysical observations are pointing out huge amounts of “dark matter” and “dark energy” needed to explain the observed large scale structure and cosmic dynamics. The emerging picture is a spatially flat, homogeneous Universe undergoing the today observed accelerated phase. Despite of the good quality of astrophysical surveys, commonly addressed as Precision Cosmology, the nature and the nurture of dark energy and dark matter, which should constitute the bulk of cosmological matter-energy, are still unknown. Furthermore, up to now, no experimental evidence has been found, at fundamental level, to explain such mysterious components. The problem could be completely reversed considering dark matter and dark energy as “shortcomings” of General Relativity in its simplest formulation (a linear theory in the Ricci scalar R, minimally coupled to the standard perfect fluid matter) and claiming for the “correct” theory of gravity as that derived by matching the largest number of observational data, without imposing any theory a priori. As a working hypothesis, accelerating behavior of cosmic fluid, large scale structure, potential of galaxy clusters, rotation curves of spiral galaxies could be reproduced by means of extending the standard theory of General Relativity. In other words, gravity could acts in different ways at different scales and the above “shortcomings” could be due to incorrect extrapolations of the Einstein gravity, actually tested at short scales and low energy regimes. After a survey of what is intended for Extended Theories of Gravity in the so called “metric” and “Palatini” approaches, we discuss some cosmological and astrophysical applications where the issues related to the dark components are addressed by enlarging the Einstein theory to more general f (R) Lagrangians, where f (R) is a generic function of Ricci scalar R, not assumed simply linear. Obviously, this is not the final answer to the problem of “dark-components” but it can be considered as an operative scheme whose aim is to avoid the addition of unknown exotic ingredients to the cosmic pie.

Keywords

Extended theories of gravity Dark energy Dark matter Observations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weinberg S. (1972). Gravitation and Cosmology. Wiley, New York Google Scholar
  2. 2.
    Guth A. (1981). Phys. Rev. D 23: 347 ADSGoogle Scholar
  3. 3.
    Buchbinder I.L., Odintsov S.D. and Shapiro I.L. (1992). Effective Action in Quantum Gravity. IOP Publishing, Bristol Google Scholar
  4. 4.
    Bondi H. (1952). Cosmology. Cambridge University Press, Cambridge MATHGoogle Scholar
  5. 5.
    Brans C. and Dicke R.H. (1961). Phys. Rev. 124: 925 MATHADSMathSciNetGoogle Scholar
  6. 6.
    Capozziello S., de Ritis R., Rubano C. and Scudellaro P. (1996). La Rivista del Nuovo Cimento 4: 1 Google Scholar
  7. 7.
    Sciama D.W. (1953). Mon. Not. R. Aston. Soc. 113: 34 MATHADSMathSciNetGoogle Scholar
  8. 8.
    Birrell N.D. and Davies P.C.W. (1982). Quantum Fields in Curved Space. Cambridge University Press, Cambridge MATHGoogle Scholar
  9. 9.
    Vilkovisky G. (1992). Class. Quantum Grav. 9: 895 ADSMathSciNetGoogle Scholar
  10. 10.
    Gasperini M. and Veneziano G. (1992). Phys. Lett. 277: 256 MathSciNetGoogle Scholar
  11. 11.
    Magnano G., Ferraris M. and Francaviglia M. (1987). Gen. Relativ. Gravit. 19: 465 MATHADSMathSciNetGoogle Scholar
  12. 12.
    Barrow J. and Ottewill A.C. (1983). J. Phys. A: Math. Gen. 16: 2757 ADSMathSciNetGoogle Scholar
  13. 13.
    Starobinsky A.A. (1980). Phys. Lett. 91: 99 Google Scholar
  14. 14.
    Duruisseau J.P. and Kerner R. (1983). Gen. Rel. Grav. 15: 797–807 ADSMathSciNetGoogle Scholar
  15. 15.
    La D. and Steinhardt P.J. (1989). Phys. Rev. Lett. 62: 376 ADSGoogle Scholar
  16. 16.
    Teyssandier P. and Tourrenc Ph. (1983). J. Math. Phys. 24: 2793 MATHADSMathSciNetGoogle Scholar
  17. 17.
    Maeda K. (1989). Phys. Rev. D 39: 3159 ADSMathSciNetGoogle Scholar
  18. 18.
    Wands D. (1994). Class. Quantum Grav. 11: 269 ADSMathSciNetGoogle Scholar
  19. 19.
    Capozziello S., de Ritis R. and Marino A.A. (1998). Gen. Relativ. Gravit. 30: 1247 MATHADSMathSciNetGoogle Scholar
  20. 20.
    Gottlöber S., Schmidt H.-J. and Starobinsky A.A. (1990). Class. Quantum Grav. 7: 893 MATHADSGoogle Scholar
  21. 21.
    Ruzmaikina T.V. and Ruzmaikin A.A. (1970). JETP 30: 372 ADSGoogle Scholar
  22. 22.
    Amendola L., Battaglia-Mayer A., Capozziello S., Gottlöber S., Müller V., Occhionero F. and Schmidt H.-J. (1993). Class. Quantum Grav. 10: L43 MATHADSGoogle Scholar
  23. 23.
    Battaglia-Mayer A. and Schmidt H.-J. (1993). Class. Quantum Grav. 10: 2441 ADSGoogle Scholar
  24. 24.
    Schmidt H.-J. (1990). Class. Quantum Grav. 7: 1023 MATHADSGoogle Scholar
  25. 25.
    Capozziello S., Nojiri S. and Odintsov S.D. (2006). Phys. Lett. B 634: 93 ADSGoogle Scholar
  26. 26.
    Amendola L., Capozziello S., Litterio M. and Occhionero F. (1992). Phys. Rev. D 45: 417 ADSMathSciNetGoogle Scholar
  27. 27.
    Perlmutter S., et al. (1999). Astrophys. J. 517: 565 ADSGoogle Scholar
  28. 28.
    Knop R.A., et al. (2003). Astrophys. J. 598: 102 ADSGoogle Scholar
  29. 29.
    Riess A.G., et al. (1998). Astrophys. J. 116: 1009 Google Scholar
  30. 30.
    Tonry J.L., et al. (2003). Astrophys. J. 594: 1 ADSGoogle Scholar
  31. 31.
    de Bernardis P., et al. (2000). Nature 404: 955 ADSGoogle Scholar
  32. 32.
    Stompor R., et al. (2001). Astrophys. J. 561: L7 ADSGoogle Scholar
  33. 33.
    Spergel D.N., et al. (2003). Astrophys. J. 148: 175 Google Scholar
  34. 34.
    Hinshaw G., et al. (2003). Astrophys. J. 148: 135 Google Scholar
  35. 35.
    Spergel, D.N., et al.: astro-ph/0603449 (2006)Google Scholar
  36. 36.
    Riess A.G., et al. (2004). Astrophys. J. 607: 665 ADSGoogle Scholar
  37. 37.
    Sahni V. and Starobinski A. (2000). Int. J. Mod. Phys. D 9: 373 ADSGoogle Scholar
  38. 38.
    Padmanabhan T. (2003). Phys. Rept. 380: 235 MATHADSMathSciNetGoogle Scholar
  39. 39.
    Copeland E.J., Sami M. and Tsujikawa S. (2006). Int. J. Mod. Phys. D 15: 1753 MATHADSMathSciNetGoogle Scholar
  40. 40.
    Kamenshchik A., Moschella U. and Pasquier V. (2001). Phys. Lett. B 511: 265 MATHADSGoogle Scholar
  41. 41.
    Padmanabhan T. (2002). Phys. Rev. D 66: 021301 ADSGoogle Scholar
  42. 42.
    Bassett B.A., Kunz M., Parkinson D. and Ungarelli C. (2003). Phys. Rev. D 68: 043504 ADSGoogle Scholar
  43. 43.
    Cardone V.F., Troisi A. and Capozziello S. (2004). Phys. Rev. D 69: 083517 ADSGoogle Scholar
  44. 44.
    Capozziello S., Cardone V.F., Elizalde E., Nojiri S. and Odintsov S.D. (2006). Phys. Rev. D 73: 043512 ADSGoogle Scholar
  45. 45.
    Lue A., Scoccimarro R. and Starkman G. (2004). Phys. Rev. D 69: 044005 ADSGoogle Scholar
  46. 46.
    Freese K. and Lewis M. (2002). Phys. Lett. B 540: 1 MATHADSMathSciNetGoogle Scholar
  47. 47.
    Dvali G.R., Gabadadze G. and Porrati M. (2000). Phys. Lett. B 485: 208 MATHADSMathSciNetGoogle Scholar
  48. 48.
    Capozziello S. (2002). Int. J. Mod. Phys. D 11: 483 MATHADSMathSciNetGoogle Scholar
  49. 49.
    Nojiri S. and Odintsov S.D. (2003). Phys. Rev. D 68: 123512 ADSMathSciNetGoogle Scholar
  50. 50.
    Carroll S.M., Duvvuri V., Trodden M. and Turner M.S. (2004). Phys. Rev. D 70: 043528 ADSGoogle Scholar
  51. 51.
    Allemandi G., Borowiec A. and Francaviglia M. (2004). Phys. Rev. D 70: 103503 ADSMathSciNetGoogle Scholar
  52. 52.
    Nojiri S. and Odintsov S.D. (2007). Int. J. Meth. Mod. Phys. 4: 115 MATHMathSciNetGoogle Scholar
  53. 53.
    Capozziello S., Cardone V.F., Piedipalumbo E., Sereno M. and Troisi A. (2003). Int. J. Mod. Phys. D 12: 381 ADSGoogle Scholar
  54. 54.
    Capozziello S., Cardone V.F., Carloni S. and Troisi A. (2003). Int. J. Mod. Phys. D 12: 1969 ADSGoogle Scholar
  55. 55.
    Starobinsky, A.A.: astro-ph/0706.2041 (2007)Google Scholar
  56. 56.
    Li B. and Barrow J.D. (2007). Phys. Rev. D 75: 084010 ADSMathSciNetGoogle Scholar
  57. 57.
    Nojiri, S., Odintsov, S.D.: hep-th/06012113 (2006)Google Scholar
  58. 58.
    Li, B., Barrow, J.D., Mota, D.F.: Phys. Rev. D (submitted), gr-qc/0705.3795Google Scholar
  59. 59.
    Chen G. and Rathra B. (2003). Astrophys. J. 582: 586 ADSGoogle Scholar
  60. 60.
    Podariu S., Daly R.A., Mory M.P. and Rathra B. (2003). Astrophys. J. 584: 577 ADSGoogle Scholar
  61. 61.
    Will C.M. (1993). Theory and Experiments in Gravitational Physics. Cambridge University Press, Cambridge Google Scholar
  62. 62.
    Hehl F.W., et al. (1976). Rev. Mod. Phys. 48: 393 ADSMathSciNetGoogle Scholar
  63. 63.
    Capozziello S., Lambiase G. and Stornaiolo C. (2001). Ann. Phys. (Leipzig) 10: 713 MATHADSMathSciNetGoogle Scholar
  64. 64.
    Stelle K. (1978). Gen. Relativ. Gravit. 9: 353 ADSMathSciNetGoogle Scholar
  65. 65.
    Sanders R.H. (1990). Ann. Rev. Astron Astrophys. 2: 1 Google Scholar
  66. 66.
    Mannheim P.D. and Kazanas D. (1989). Astrophys. J. 342: 635 ADSMathSciNetGoogle Scholar
  67. 67.
    Anderson J.D., et al. (2002). Phys. Rev. D 65: 082004 ADSGoogle Scholar
  68. 68.
    Bertolami, O., Böhmer, Ch.G., Lobo, F.S.N.: gr-qc/0704.1733 (2007)Google Scholar
  69. 69.
    Quant I. and Schmidt H.-J. (1991). Astron. Nachr. 312: 97 MATHADSGoogle Scholar
  70. 70.
    Schneider P., Ehlers J. and Falco E.E. (1992). Gravitational Lenses. Springer, Berlin Google Scholar
  71. 71.
    Krauss L.M. and White M. (1992). Astrophys. J. 397: 357 ADSGoogle Scholar
  72. 72.
    Ferraris M., Francaviglia M. and Magnano G. (1988). Class. Quantum Grav. 5: L95 ADSMathSciNetGoogle Scholar
  73. 73.
    Sokolowski L.M. (1989). Class. Quantum Grav. 6: 2045 MATHADSMathSciNetGoogle Scholar
  74. 74.
    Magnano G. and Sokołowski L.M. (1994). Phys. Rev. D 50: 5039 ADSMathSciNetGoogle Scholar
  75. 75.
    Dicke R.H. (1962). Phys. Rev. 125: 2163 MATHADSMathSciNetGoogle Scholar
  76. 76.
    Damour T. and Esposito-Farèse G. (1992). Class. Quantum Grav. 9: 2093 MATHADSGoogle Scholar
  77. 77.
    Capozziello S., de Ritis R. and Marino A.A. (1997). Class. Quantum Grav. 14: 3243 MATHADSMathSciNetGoogle Scholar
  78. 78.
    Faraoni V. (2004). Cosmology in Scalar-Tensor Gravity. Kluwer, Dordrecht MATHGoogle Scholar
  79. 79.
    Einstein, A.: Sitzung-ber. Preuss. Akad. Wiss. 414 (1925)Google Scholar
  80. 80.
    Buchdahl H.A. (1979). J. Phys. A 12(8): 1229 ADSMathSciNetGoogle Scholar
  81. 81.
    Ferraris M., Francaviglia M. and Reina C. (1982). Gen. Relativ. Gravit. 14: 243 MATHADSMathSciNetGoogle Scholar
  82. 82.
    Ferraris M., Francaviglia M. and Volovich I. (1994). Class. Quantum Grav. 11: 1505 MATHADSMathSciNetGoogle Scholar
  83. 83.
    Vollick D.N. (2003). Phys. Rev. D68: 063510 ADSGoogle Scholar
  84. 84.
    Li B. and Chu M.C. (2006). Phys. Rev. D 74: 104010 ADSGoogle Scholar
  85. 85.
    Li, B., Chan, K.C., Chu, M.C.: Phys. Rev. D astro-ph/0610794 (2006) (in press)Google Scholar
  86. 86.
    Allemandi G., Capone M., Capozziello S. and Francaviglia M. (2006). Gen. Relativ. Gravit. 38: 33 MATHADSMathSciNetGoogle Scholar
  87. 87.
    Meng X. and Wang P. (2004). Gen. Relativ. Gravit. 36(8): 1947 MATHADSMathSciNetGoogle Scholar
  88. 88.
    Meng X. and Wang P. (2004). Gen. Relativ. Gravit. 36(12): 2673 ADSMathSciNetGoogle Scholar
  89. 89.
    Einstein A. (1916). Ann. der Physik 49: 769 ADSGoogle Scholar
  90. 90.
    Eisenhart L.P. (1955). Riemannian Geometry. Princeton University Press, Princeton Google Scholar
  91. 91.
    Schrödinger E. (1960). Space-Time Structure. Cambridge University Press, Cambridge Google Scholar
  92. 92.
    Levi-Civita T. (1929). The Absolute Differential Calculus. Blackie and Son, London Google Scholar
  93. 93.
    Klein, O.: New Theories in Physics 77, International Institute of Intellectual Co-operation, League of Nations (1938)Google Scholar
  94. 94.
    Cartan E. (1925). Ann. Econ. Norm. 42: 17 ADSMathSciNetGoogle Scholar
  95. 95.
    Palatini A. (1919). Rend. Circ. Mat. Palermo 43: 203 CrossRefMATHGoogle Scholar
  96. 96.
    Arnold V.I. (1978). Mathematical Methods of Classical Mechanics. Springer, Berlin MATHGoogle Scholar
  97. 97.
    Appelquist T., Chodos A. and Freund P.G.O. (1987). Modern Kaluza–Klein Theories. Addison-Wesley, Reading MATHGoogle Scholar
  98. 98.
    Kaku M. (1993). Quantum Field Theory. Oxford University Press, Oxford Google Scholar
  99. 99.
    Green M.B., Schwarz J.H. and Witten E. (1987). Superstring Theory. Cambridge University Press, Cambridge MATHGoogle Scholar
  100. 100.
    Damour T. and Esposito-Farese G. (1992). Class. Quant. Grav. 9: 2093 MATHADSMathSciNetGoogle Scholar
  101. 101.
    Ferraris, M., Francaviglia, M.: In: Francaviglia, M., (ed.) Mechanics, Analysis and Geometry: 200 Years after Lagrange. Elsevier BV, Amsterdam (1991)Google Scholar
  102. 102.
    Capozziello S., de Ritis R., Rubano C. and Scudellaro P. (1996). Int. J. Mod. Phys. D 5: 85 ADSMathSciNetGoogle Scholar
  103. 103.
    Capozziello S. and de Ritis R. (1994). Class. Quantum Grav. 11: 107 ADSMathSciNetGoogle Scholar
  104. 104.
    Sahni V. and Starobinsky A. (2000). Int. J. Mod. Phys. D 9: 373 ADSGoogle Scholar
  105. 105.
    Capozziello S., Cardone V.F., Funaro M. and Andreon S. (2004). Phys. Rev. D 70: 123501 ADSGoogle Scholar
  106. 106.
    Capozziello S., Cardone V.F. and Troisi A. (2005). Phys. Rev. D 71: 043503 ADSGoogle Scholar
  107. 107.
    Capozziello S., Cardone V.F., Piedipalumbo E. and Rubano C. (2006). Class. Quant. Grav. 23: 1205 MATHADSMathSciNetGoogle Scholar
  108. 108.
    Hannestad S. and Mortsell E. (2002). Phys. Rev. D 66: 0635088 Google Scholar
  109. 109.
    Melchiorri A., Mersini L., Odman C.J. and Trodden M. (2003). Phys. Rev. D 68: 043509 ADSGoogle Scholar
  110. 110.
    Hannestad S. and Mortsell E. (2004). JCAP 0409: 001 ADSGoogle Scholar
  111. 111.
    Song Y., Hu W. and Sawicki I. (2007). Phys. Rev. D 75: 044004 ADSMathSciNetGoogle Scholar
  112. 112.
    Tsujikawa, S.: astro-ph/0705.1032 (2007)Google Scholar
  113. 113.
    Koivisto T. (2006). Phys. Rev. D 73: 083517 ADSMathSciNetGoogle Scholar
  114. 114.
    Boughn S. and Crittenden R. (2004). Nature (Lond) 427: 45 ADSGoogle Scholar
  115. 115.
    Fasalba P. and Gaztanaga E. (2004). Mon. Not. R. Aston. Soc. 350: L37 ADSGoogle Scholar
  116. 116.
    Nolta M.R., et al. (2004). Astrophys. J. 608: 10 ADSGoogle Scholar
  117. 117.
    Zhang, P., Liguori, M., Bean, R., Dodelson, S.: astro-ph/0704.1932 (2007)Google Scholar
  118. 118.
    Capozziello S. (2007). Int. J. Geom. Methods Mod. Phys. 4: 53 MATHMathSciNetGoogle Scholar
  119. 119.
    Tegmark M., et al. (2004). Phys. Rev. D 69: 103501 ADSGoogle Scholar
  120. 120.
    Rebolo, R., et al.: astro-ph/0402466 (2004)Google Scholar
  121. 121.
    Daly, R.A., Djorgovski, S.G.: astro-ph/0403664 (2004)Google Scholar
  122. 122.
    Freedman W.L., et al. (2001). Astrophys. J. 553: 47 ADSGoogle Scholar
  123. 123.
    Cardone V.F., Capozziello S., Re V. and Piedipalumbo E. (2002). Astron. Astrophys. 382: 792 ADSGoogle Scholar
  124. 124.
    Saunders R., et al. (2003). Mon. Not. R. Aston. Soc. 341: 937 ADSGoogle Scholar
  125. 125.
    Schmidt R.W., Allen S.W. and Fabian A.C. (2004). Mon. Not. R. Aston. Soc. 352: 1413 ADSGoogle Scholar
  126. 126.
    Wang Y. and Mukherjee P. (2004). Astrophys. J. 606: 654 ADSGoogle Scholar
  127. 127.
    Wang Y. and Tegmark M. (2004). Phys. Rev. Lett. 92: 241302 ADSGoogle Scholar
  128. 128.
    Hu W. and Sugiyama N. (1996). Astrophys. J. 471: 542 ADSGoogle Scholar
  129. 129.
    Kirkman D., Tyler D., Suzuki N., O’Meara J.M. and Lubin D. (2003). Astrophys. J. 149: 1 ADSGoogle Scholar
  130. 130.
    Eisenstein D., et al. (2005). Astrophys. J. 633: 560 ADSGoogle Scholar
  131. 131.
    Strauss M.A., et al. (2005). Astrophys. J. 124: 1810 Google Scholar
  132. 132.
    SNAP web page: http://snap.lbl.gov
  133. 133.
    Faraoni V. (2005). Class. Quantum Grav. 22: 32352 MathSciNetGoogle Scholar
  134. 134.
    Rubano C. and Scudellaro P. (2005). Gen. Relativ. Gravit. 37: 521 MATHADSMathSciNetGoogle Scholar
  135. 135.
    Sasaki S. (1996). PASJ 48: L119 ADSGoogle Scholar
  136. 136.
    Pen U. (1997). New Aston. 2: 309 ADSGoogle Scholar
  137. 137.
    Allen S.W., Schmidt R.W. and Fabian A.C. (2002). Mon. Not. R. Aston. Soc. 334: L11 ADSGoogle Scholar
  138. 138.
    Allen S.W., Schmidt R.W. and Bridle S. (2003). Mon. Not. R. Aston. Soc. 346: 593 ADSGoogle Scholar
  139. 139.
    Allen, S.W., Schmidt, R.W., Ebeling, H., Fabian, A.C., van Speybrock, L.: astro-ph/0405340 (2004)Google Scholar
  140. 140.
    Eke V., Navarro J.F. and Frenk C.S. (1998). Astrophys. J. 503: 569 ADSGoogle Scholar
  141. 141.
    Freedman W.L., et al. (2001). Astrophys. J. 553: 47 ADSGoogle Scholar
  142. 142.
    Tegmark, M., et al.: astro-ph/0310723Google Scholar
  143. 143.
    Dalal N., Abazajian K., Jenkins E. and Manohar A.V. (2001). Phys. Rev. Lett. 87: 141302 ADSGoogle Scholar
  144. 144.
    Lima J.A.S. and Alcaniz J.S. (2000). Mon. Not. R. Aston. Soc. 317: 893 ADSGoogle Scholar
  145. 145.
    Worthey, G.: Ph.D. Thesis. California University, Santa Cruz, 1992Google Scholar
  146. 146.
    Bower R.G., Kodama T. and Terlevich A. (1998). Mon. Not. R. Aston. Soc. 299: 1193 ADSGoogle Scholar
  147. 147.
    Andreon S., Lobo C. and Iovino A. (2004). Mon. Not. R. Aston. Soc. 349: 889 ADSGoogle Scholar
  148. 148.
    Kodama T. and Arimoto N. (1997). Astron. Astrophys. 320: 41 ADSGoogle Scholar
  149. 149.
    Andreon S. (2003). Astron. Astrophys. 409: 37 ADSGoogle Scholar
  150. 150.
    Wyithe J.B., Loeb A. and Barnes D.G. (2005). Astrophys. J. 634: 715 ADSGoogle Scholar
  151. 151.
    McQuinn M., et al. (2006). Astrophys. J. 653: 815 ADSGoogle Scholar
  152. 152.
    Sigurdson K. and Cooray A. (2005). Phys. Rev. Lett. 95: 211303 ADSGoogle Scholar
  153. 153.
    Blakeslee J.P., et al. (2003). Astrophys. J. 596: L143 ADSGoogle Scholar
  154. 154.
    Cayrel R., et al. (2001). Nature 409: 691 ADSGoogle Scholar
  155. 155.
    Daly R.A. and Djorgovsky S.G. (2004). Astrophys. J. 612: 652 ADSGoogle Scholar
  156. 156.
    Spergel D.N., et al.: arXiv: astro-ph/0603449 (2006)Google Scholar
  157. 157.
    Capozziello, S., Nojiri, S., Odintsov, S.D., Troisi, A.: Phys. Lett. B 135 (2006)Google Scholar
  158. 158.
    Amendola L., Polarski D. and Tsujikawa S. (2007). Phys. Rev. Lett. 98: 131302 ADSMathSciNetGoogle Scholar
  159. 159.
    Amendola L., Gannouji R., Polarski D. and Tsujikawa S. (2007). Phys. Rev. D75: 083504 ADSGoogle Scholar
  160. 160.
    Carloni S., Dunsby P., Capozziello S. and Troisi A. (2005). Class. Quant. Grav. 22: 4839 MATHADSMathSciNetGoogle Scholar
  161. 161.
    Carloni, S., Troisi, A., Dunsby, P.K.S.: gr-qc/0706.0452 (2007)Google Scholar
  162. 162.
    Hwang J.C. and Noh H. (1996). Phys. Rev. D 54: 1460 ADSGoogle Scholar
  163. 163.
    Hwang J.C. and Noh H. (2001). Phys. Lett. B 506: 13 ADSGoogle Scholar
  164. 164.
    Zhang P. (2006). Phys. Rev. D 73: 123504 ADSGoogle Scholar
  165. 165.
    Mukhanov V.F., Feldman H.A. and Brandenberger R.H. (1992). Phys. Rept. 215: 203 ADSMathSciNetGoogle Scholar
  166. 166.
    Lahav O., et al. (2002). Mon. Not. R. Aston. Soc. 333: 961 ADSGoogle Scholar
  167. 167.
    Capozziello S., Cardone V.F. and Francaviglia M. (2006). Gen. Relativ. Gravit. 38: 711 MATHADSMathSciNetGoogle Scholar
  168. 168.
    Capozziello S. and Corda Ch. (2006). Int. J. Mod. Phys. D 15: 1119 MATHADSGoogle Scholar
  169. 169.
    Capozziello S., Corda Ch. and De Laurentis M. (2007). Mod. Phys. Lett. A 22: 1097 MATHADSGoogle Scholar
  170. 170.
    Capozziello, S., De Laurentis, M., Francaviglia, M.: Int. J. Mod. Phys. D (2007)(submitted)Google Scholar
  171. 171.
    Milgrom M. (1983). Astroph. J. 270: 365 ADSGoogle Scholar
  172. 172.
    Bekenstein J. (2004). Phys. Rev. D 70: 083509 ADSGoogle Scholar
  173. 173.
    Stelle K. (1978). Gen. Rel. Grav. 9: 353 ADSMathSciNetGoogle Scholar
  174. 174.
    Capozziello S., Cardone V.F., Carloni S. and Troisi A. (2004). Phys. Lett. A 326: 292 ADSMathSciNetMATHGoogle Scholar
  175. 175.
    Capozziello S., Cardone V.F. and Troisi A. (2006). JCAP 0608: 1423 Google Scholar
  176. 176.
    Capozziello S., Cardone V.F. and Troisi A. (2007). Mon. Not. R. Aston. Soc. 375: 1423 ADSGoogle Scholar
  177. 177.
    de Blok W.J.G. and Bosma A. (2002). Astron. Astroph. 385: 816 ADSGoogle Scholar
  178. 178.
    Frigerio, C., Martins, P.: Salucci, astro-ph/07032443Google Scholar
  179. 179.
    Binney J. and Tremaine S. (1987). Galactic Dynamics. Princeton University Books, Princeton MATHGoogle Scholar
  180. 180.
    Burkert A. (1995). Astrophys. J. 447: L25 ADSGoogle Scholar
  181. 181.
    Burkert A. and Silk J. (1997). Astrophys. J. 488: L55 ADSGoogle Scholar
  182. 182.
    Borriello A. and Salucci P. (2001). Mont. Not. Roy. Astron. Soc. 323: 285 ADSGoogle Scholar
  183. 183.
    Gentile G. and Salucci P. (2004). Mon. Not. Roy. Astron. Soc. 351: 953 Google Scholar
  184. 184.
    McGaugh S.S. (2005). Astrophys. J. 632: 859 ADSGoogle Scholar
  185. 185.
    Capozziello, S., Carloni, S., Troisi, A.: Rec. Res. Devel. Astron. Astrophys. 1, 625 (2003), astro-ph/0303041Google Scholar
  186. 186.
    Allemandi G., Borowiec A. and Francaviglia M. (2004). Phys. Rev. D 70: 043524 ADSMathSciNetGoogle Scholar
  187. 187.
    Vollick D.N. (2003). Phys. Rev. D 68: 063510 ADSGoogle Scholar
  188. 188.
    Meng X.H. and Wang P. (2003). Class. Quant. Grav. 20: 4949 MATHADSMathSciNetGoogle Scholar
  189. 189.
    Flanagan E.E. (2004). Phys. Rev. Lett. 92: 071101 ADSMathSciNetGoogle Scholar
  190. 190.
    Flanagan E.E. (2004). Class. Quant. Grav. 21: 417 MATHADSMathSciNetGoogle Scholar
  191. 191.
    Meng X.H. and Wang P. (2004). Class. Quant. Grav. 21: 951 MATHADSMathSciNetGoogle Scholar
  192. 192.
    Kremer G.M. and Alves D.S.M. (2004). Phys. Rev. D 70: 023503 ADSGoogle Scholar
  193. 193.
    Multamaki T. and Vilja I. (2006). Phys. Rev. D 73: 024018 ADSMathSciNetGoogle Scholar
  194. 194.
    Olmo G.J. (2005). Phys. Rev. Lett. 95: 261102 ADSGoogle Scholar
  195. 195.
    Olmo G.J. (2005). Phys. Rev. D 72: 083505 ADSGoogle Scholar
  196. 196.
    Capozziello, S., Troisi, A.: Phys. Rev. D 72 (2005)Google Scholar
  197. 197.
    Capozziello S., Stabile A. and Troisi A. (2006). Mod. Phys. Lett. A 21: 2291 MATHADSGoogle Scholar
  198. 198.
    Allemandi G., Francaviglia M., Ruggiero M. and Tartaglia A. (2005). Gen. Rel. Grav. 37: 1891 MATHADSMathSciNetGoogle Scholar
  199. 199.
    Turyshev, S.G., Shao, M., Nordtvedt, K.L.: pre-print: gr-qc/0601035Google Scholar
  200. 200.
    Shapiro, I.I.: In: Ashby, N., et al. (eds.) General Relativity and Gravitation 12. Cambridge University Press, Cambridge (1993)Google Scholar
  201. 201.
    Shapiro S.S., et al. (2004). Phys. Rev. Lett. D 92: 121101 ADSGoogle Scholar
  202. 202.
    Williams J.G., et al. (1996). Phys. Rev. D 53: 6730 ADSGoogle Scholar
  203. 203.
    Bertotti B., Iess L. and Tortora P. (2003). Nature 425: 374 ADSGoogle Scholar
  204. 204.
    Capolupo A., Capozziello S. and Vitiello G. (2007). Phys. Lett. A 363: 53 ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Dipartimento di Scienze fisicheUniversità di Napoli “Federico II”, and INFN Sez. di Napoli, Compl. Univ. di Monte S. Angelo, Edificio GNapoliItaly
  2. 2.Dipartimento di MatematicaUniversità di Torino, and INFN Sez. di TorinoTorinoItaly

Personalised recommendations