Advertisement

General Relativity and Gravitation

, Volume 40, Issue 2–3, pp 301–328 | Cite as

Dark energy and dark gravity: theory overview

  • Ruth DurrerEmail author
  • Roy Maartens
Research Article

Abstract

Observations provide increasingly strong evidence that the universe is accelerating. This revolutionary advance in cosmological observations confronts theoretical cosmology with a tremendous challenge, which it has so far failed to meet. Explanations of cosmic acceleration within the framework of general relativity are plagued by difficulties. General relativistic models are nearly all based on a dark energy field with fine-tuned, unnatural properties. There is a great variety of models, but all share one feature in common—an inability to account for the gravitational properties of the vacuum energy. Speculative ideas from string theory may hold some promise, but it is fair to say that no convincing model has yet been proposed. An alternative to dark energy is that gravity itself may behave differently from general relativity on the largest scales, in such a way as to produce acceleration. The alternative approach of modified gravity (or dark gravity) provides a new angle on the problem, but also faces serious difficulties, including in all known cases severe fine-tuning and the problem of explaining why the vacuum energy does not gravitate. The lack of an adequate theoretical framework for the late-time acceleration of the universe represents a deep crisis for theory—but also an exciting challenge for theorists. It seems likely that an entirely new paradigm is required to resolve this crisis.

Keywords

Ghost Dark Energy Cosmological Constant Vacuum Energy Dark Energy Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Spergel, D.N., et al.: [WMAP Collaboration], Wilkinson Microwave Anisotropy Probe (WMAP) three year results: implications for cosmology. Astrophys. J. 657, 645 (2007) [arXiv:astro-ph/0603449]Google Scholar
  2. 2.
    Percival, W.J., et al.: The shape of the SDSS DR5 galaxy power spectrum. Astrophys. J. 665, 377 (2007) [arXiv:astro-ph/0608636]Google Scholar
  3. 3.
    Henry Tye, S.H.: Brane inflation: string theory viewed from the cosmos. arXiv:hep-th/0610221Google Scholar
  4. 4.
    Kallosh, R.: On inflation in string theory. arXiv:hep-th/0702059Google Scholar
  5. 5.
    Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang: improved dynamics. Phys. Rev. D 74, 084003 (2006) [arXiv:gr-qc/0607039]Google Scholar
  6. 6.
    Bojowald, M.: Loop quantum cosmology. Living Rev. Rel. 8,11 (2005) [arXiv:gr-qc/0601085]Google Scholar
  7. 7.
    Erickson, J.K., Gratton, S., Steinhardt, P.J., Turok, N.: Cosmic perturbations through the cyclic ages. arXiv:hep-th/0607164Google Scholar
  8. 8.
    Brandenberger, R.H.: String gas cosmology and structure formation: a brief review. arXiv:hep-th/0702001Google Scholar
  9. 9.
    Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753 (2006) [arXiv:hep-th/0603057]Google Scholar
  10. 10.
    Perivolaropoulos, L.: Accelerating universe: observational status and theoretical implications. arXiv:astro-ph/0601014Google Scholar
  11. 11.
    Nojiri, S., Odintsov, S.D.: Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Meth. Math. Phys. 4, 115 (2007) [arXiv:hep-th/0601213]Google Scholar
  12. 12.
    Padmanabhan, T.: Dark Energy: Mystery of the Millennium. AIP Conf. Proc. 861, 179 (2006) [arXiv:astro-ph/0603114]Google Scholar
  13. 13.
    Straumann, N.: Dark energy: recent developments. Mod. Phys. Lett. A 21, 1083 (2006) [arXiv:hep-ph/0604231]Google Scholar
  14. 14.
    Bludman, S.: Cosmological acceleration: dark energy or modified gravity? arXiv:astro-ph/0605198Google Scholar
  15. 15.
    Uzan, J.P.: The acceleration of the universe and the physics behind it. arXiv:astro-ph/0605313Google Scholar
  16. 16.
    Polarski, D.: Dark energy: beyond general relativity? AIP Conf. Proc. 861, 1013 (2006) [arXiv:astro-ph/0605532]Google Scholar
  17. 17.
    Ruiz-Lapuente, P.: Dark energy, gravitation and supernovae. Class. Quant. Grav. 24, R91 (2007) [arXiv:0704.1058]Google Scholar
  18. 18.
    Enqvist, K.: this volumeGoogle Scholar
  19. 19.
    Goodman, J.: Geocentrism reexamined. Phys. Rev. D52, 1821 (1995) [arXiv:astro-ph/9506068]Google Scholar
  20. 20.
    Ellis, G.F.R., Maartens, R.: The emergent universe: inflationary cosmology with no singularity. Class. Quant. Grav. 21, 223 (2004) [arXiv:gr-qc/0211082]Google Scholar
  21. 21.
    Hlozek, R., Cortes, M., Bassett, B.A., Clarkson, C.: this volumeGoogle Scholar
  22. 22.
    Knop, R.A., et al.: [The Supernova Cosmology Project Collaboration], New constraints on ΩM, ΩΛ, and w from an independent set of eleven high-redshift supernovae observed with HST. Astrophys. J. 598, 102 (2003) [arXiv:astro-ph/0309368]Google Scholar
  23. 23.
    Wood-Vasey, W.M. et al. Observational Constraints on the Nature of the Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey. arXiv:astro-ph/0701041Google Scholar
  24. 24.
    Leibundgut, B.: this volumeGoogle Scholar
  25. 25.
    Nichol, R.: this volumeGoogle Scholar
  26. 26.
    Sarkar, S.: this volumeGoogle Scholar
  27. 27.
    Bressi G., Carugno G., Onofrio R. and Ruoso G. (2002). Measurement of the Casimir force between parallel metallic surfaces. Phys. Rev. Lett. 88: 041804 CrossRefADSGoogle Scholar
  28. 28.
    Bordag, M., Mohideen, U., Mostepanenko, V.M.: New developments in the Casimir effect. Phys. Rept. 353, 1 (2001) [arXiv:quant-ph/0106045]Google Scholar
  29. 29.
    Padmanabhan, T.: this volumeGoogle Scholar
  30. 30.
    Bousso, R.: this volumeGoogle Scholar
  31. 31.
    Linder, E.: this volumeGoogle Scholar
  32. 32.
    Buchert, T.: this volumeGoogle Scholar
  33. 33.
    Capozziello, S., Francaviglia, M.: this volumeGoogle Scholar
  34. 34.
    Koyama, K.: this volumeGoogle Scholar
  35. 35.
    Ostrogradski M. (1850). Memoire Academie St. Petersbourg, Ser. VI 4: 385 Google Scholar
  36. 36.
    Woodard, R.P.: Avoiding Dark Energy with 1/R Modifications of Gravity (2006) [arXiv:astro-ph/0601672]Google Scholar
  37. 37.
    Bonvin, C., Caprini, C., Durrer, R.: (2007) [arXiv:0706.1538]Google Scholar
  38. 38.
    Velo G. and Zwanzinger D. (1969). Propagation and quantization of Rarita–Schwinger waves in an external electromagnetic potential. Phys. Rev. 186: 1337 CrossRefADSGoogle Scholar
  39. 39.
    Velo G. and Zwanzinger D. (1969). Noncausality and other defects of interaction Lagrangians for particles with spin one and higher. Phys. Rev. 188: 2218 CrossRefADSGoogle Scholar
  40. 40.
    Morris M.S., Thorne K.S. and Yurtsever U. (1988). Wormholes, time machines and the weak energy condition. Phys. Rev. Lett. 61: 1446 CrossRefADSGoogle Scholar
  41. 41.
    Gott J.R. (1991). Closed timelike curves produced by pairs of moving cosmic strings: Exact solutions. Phys. Rev. Lett. 66: 1126 zbMATHCrossRefADSMathSciNetGoogle Scholar
  42. 42.
    Ori, A.: Formation of closed timelike curves in a composite vacuum/dust asymptotically-flat spacetime. Phys. Rev. D76, 044002 (2007) [arXiv:gr-qc/0701024]Google Scholar
  43. 43.
    Bonnor W.B. and Steadman B.R. (2005). Exact solutions of the Einstein–Maxwell equations with closed timelike curves. Gen. Rel. Grav. 37: 1833 zbMATHCrossRefADSMathSciNetGoogle Scholar
  44. 44.
    Babichev, E., Mukhanov, V., Vikman, A.: k-essence, superluminal propagation, causality and emergent geometry. (2007) [arXiv:0708.0561]Google Scholar
  45. 45.
    Froissart M. (1961). Asymptotic behavior and subtractions in the Mandelstam representation. Phys. Rev. 123: 1053 CrossRefADSGoogle Scholar
  46. 46.
    Itzykson C. and Zuber J.B. (1980). Quantum Field Theory, Chap. 5. McGraw Hill, New York Google Scholar
  47. 47.
    Adams, A., Arkani-Hamed, N., Dubovsky, S., Nicolis, A., Rattazzi, R.: Causality, analyticity and an IR obstruction to UV completion. JHEP 0610, 014 (2006) [arXiv:hep-th/0602178]Google Scholar
  48. 48.
    Polchinski, J.: The cosmological constant and the string landscape. arXiv:hep-th/0603249Google Scholar
  49. 49.
    Bousso, R.: Precision cosmology and the landscape. arXiv:hep-th/0610211Google Scholar
  50. 50.
    Padmanabhan, T.: Why does gravity ignore the vacuum energy? Int. J. Mod. Phys. D 15, 2029 (2006) [arXiv:gr-qc/0609012]Google Scholar
  51. 51.
    Amendola, L., Campos, G.C., Rosenfeld, R.: Consequences of dark matter-dark energy interaction on cosmological parameters derived from SNIa data. (2006) [arXiv:astro-ph/0610806]Google Scholar
  52. 52.
    Guo, Z.K., Ohta, N., Tsujikawa, S.: Probing the coupling between dark components of the Universe. Phys. Rev. D76, 023508 (2007) [arXiv:astro-ph/0702015]Google Scholar
  53. 53.
    Armendariz-Picon, C., Mukhanov, V., Steinhardt, P.J.: Dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration. Phys. Rev. Lett. 85 4438 (2000) [arXiv:astro-ph/0004134]Google Scholar
  54. 54.
    Bonvin, C., Caprini, C., Durrer, R.: A no-go theorem for k-essence dark energy. Phys. Rev. Lett. 97, 081303 (2006) [arXiv:astro-ph/0606584]Google Scholar
  55. 55.
    Ellis, G., Maartens, R., MacCallum, M.: Causality and the speed of sound. arXiv:gr-qc/0703121Google Scholar
  56. 56.
    Kunz, M.: The dark degeneracy: on the number and nature of dark components. (2007) [arXiv:astro-ph/0702615]Google Scholar
  57. 57.
    Kolb, E.W., Matarrese, S., Notari, A., Riotto, A.: Primordial inflation explains why the universe is accelerating today. arXiv:hep-th/0503117Google Scholar
  58. 58.
    Geshnizjani, G., Chung, D.J.H., Afshordi, N.: Do large-scale inhomogeneities explain away dark energy? Phys. Rev. D 72, 023517 (2005) [arXiv:astro-ph/0503553]Google Scholar
  59. 59.
    Hirata, C.M., Seljak, U.: Can superhorizon cosmological perturbations explain the acceleration of the universe? Phys. Rev. D 72, 083501 (2005) [arXiv:astro-ph/0503582]Google Scholar
  60. 60.
    Flanagan, E.E.: Can superhorizon perturbations drive the acceleration of the universe? Phys. Rev. D 71, 103521 (2005) [arXiv:hep-th/0503202]Google Scholar
  61. 61.
    Rasanen, S.: Backreaction and spatial curvature in a dust universe. Class. Quant. Grav. 23, 1823 (2006) [arXiv:astro-ph/0504005]Google Scholar
  62. 62.
    Coley, A.A., Pelavas, N., Zalaletdinov, R.M.: Cosmological solutions in macroscopic gravity. Phys. Rev. Lett. 95, 151102 (2005) [arXiv:gr-qc/0504115]Google Scholar
  63. 63.
    Alnes, H., Amarzguioui, M., Gron, O.: Can a dust dominated universe have accelerated expansion? JCAP 0701, 007 (2007) [arXiv:astro-ph/0506449]Google Scholar
  64. 64.
    Giovannini, M.: Gradient expansion(s) and dark energy. JCAP 0509, 009 (2005) [arXiv:astro-ph/0506715]Google Scholar
  65. 65.
    Nambu, Y., Tanimoto, M.: Accelerating universe via spatial averaging. arXiv:gr-qc/0507057Google Scholar
  66. 66.
    Ishibashi, A., Wald, R.M.: Can the acceleration of our universe be explained by the effects of inhomogeneities? Class. Quant. Grav. 23, 235 (2006) [arXiv:gr-qc/0509108]Google Scholar
  67. 67.
    Buchert, T.: On globally static and stationary cosmologies with or without a cosmological constant and the dark energy problem. Class. Quant. Grav. 23, 817 (2006) [arXiv:gr-qc/0509124]Google Scholar
  68. 68.
    Martineau, P., Brandenberger, R.: Back-reaction: a cosmological panacea. arXiv:astro-ph/0510523Google Scholar
  69. 69.
    Mansouri, R.: Illuminating the dark ages of the universe: the exact backreaction in the SFRW model and the acceleration of the universe. arXiv:astro-ph/0601699Google Scholar
  70. 70.
    Vanderveld, R.A., Flanagan, E.E., Wasserman, I.: Mimicking dark energy with Lemaitre–Tolman–Bondi models: weak central singularities and critical points. Phys. Rev. D 74, 023506 (2006) [arXiv:astro-ph/0602476]Google Scholar
  71. 71.
    Moffat, J.W.: Late-time inhomogeneity and the acceleration of the universe. arXiv:astro-ph/0603777Google Scholar
  72. 72.
    Paranjape, A., Singh, T.P.: The possibility of cosmic acceleration via spatial averaging in Lemaitre–Tolman–Bondi models. Class. Quant. Grav. 23, 6955 (2006) [arXiv:astro-ph/0605195]Google Scholar
  73. 73.
    Capozziello, S., Carloni, S., Troisi, A.: Quintessence without scalar fields. arXiv:astro-ph/0303041Google Scholar
  74. 74.
    Amendola, L., Gannouji, R., Polarski, D., Tsujikawa, S.: Conditions for the cosmological viability of f(R) dark energy models. Phys. Rev. D75, 083504 (2007) [arXiv:gr-qc/0612180]Google Scholar
  75. 75.
    Chiba, T., Smith, T.L., Erickcek, A.L.: Solar System constraints to general f(R) gravity. Phys. Rev. D75, 124014 (2007) [arXiv:astro-ph/0611867]Google Scholar
  76. 76.
    Dolgov, A.D., Kawasaki, M.: Can modified gravity explain accelerated cosmic expansion? Phys. Lett. B 573, 1 (2003) [arXiv:astro-ph/0307285]Google Scholar
  77. 77.
    Hu, W., Sawicki, I.: Models of f(R) Cosmic Acceleration that Evade Solar-System Tests. (2007) [arXiv:0705.1158v1]Google Scholar
  78. 78.
    Starobinsky, A.A.: Disappearing cosmological constant in f(R) gravity. JETP Lett. 86, 157 (2007) [arXiv:0706.2041v2]Google Scholar
  79. 79.
    Nojiri, S., Odintsov, S.D.: Unifying inflation with LambdaCDM epoch in modified f(R) gravity consistent with Solar System tests. Phys. Lett. B. 657, 238 (2007) [arXiv:0707.1941]Google Scholar
  80. 80.
    Boisseau, B., Esposito-Farese, G., Polarski, D., Starobinsky, A.A.: Reconstruction of a scalar–tensor theory of gravity in an accelerating universe. Phys. Rev. Lett. 85, 2236 (2000) [arXiv:gr-qc/0001066]Google Scholar
  81. 81.
    Riazuelo, A., Uzan, J.P.: Cosmological observations in scalar–tensor quintessence. Phys. Rev. D 66, 023525 (2002) [arXiv:astro-ph/0107386]Google Scholar
  82. 82.
    Esposito-Farese, G.: Tests of scalar–tensor gravity. AIP Conf. Proc. 736, 35 (2004) [arXiv:gr-qc/0409081]Google Scholar
  83. 83.
    Nesseris, S., Perivolaropoulos, L.: The limits of extended quintessence. Phys. Rev. D 75, 023517 (2007) [arXiv:astro-ph/0611238]Google Scholar
  84. 84.
    Cavaglia, M.: Black hole and brane production in TeV gravity: a review. Int. J. Mod. Phys. A 18, 1843 (2003) [arXiv:hep-ph/0210296]Google Scholar
  85. 85.
    Maartens, R.: Brane-world gravity. Living Rev. Rel. 7, 7 (2004) [arXiv:gr-qc/0312059]Google Scholar
  86. 86.
    Brax, P., van de Bruck, C., Davis, A.C.: Brane world cosmology. Rept. Prog. Phys. 67, 2183 (2004) [arXiv:hep-th/0404011]Google Scholar
  87. 87.
    Sahni, V.: Cosmological surprises from braneworld models of dark energy. arXiv:astro-ph/0502032Google Scholar
  88. 88.
    Durrer, R.: Braneworlds. AIP Conf. Proc. 782, 202 (2005) [arXiv:hep-th/0507006]Google Scholar
  89. 89.
    Langlois, D.: Is our universe brany? Prog. Theor. Phys. Suppl. 163, 258 (2006) [arXiv:hep-th/0509231]Google Scholar
  90. 90.
    Lue, A.: The phenomenology of Dvali–Gabadadze–Porrati cosmologies. Phys. Rept. 423, 1 (2006) [arXiv:astro-ph/0510068]Google Scholar
  91. 91.
    Wands, D.: Brane-world cosmology. arXiv:gr-qc/0601078Google Scholar
  92. 92.
    Dvali, G.R., Gabadadze, G., Porrati, M.: Metastable gravitons and infinite volume extra dimensions. Phys. Lett. B 484, 112 (2000) [arXiv:hep-th/0002190]Google Scholar
  93. 93.
    Deffayet, C.: Cosmology on a brane in Minkowski bulk. Phys. Lett. B 502, 199 (2001) [arXiv:hep-th/0010186]Google Scholar
  94. 94.
    Randall, L., Sundrum, R.: An alternative to compactification. Phys. Rev. Lett. 83, 4690 (1999) [arXiv:hep-th/9906064]Google Scholar
  95. 95.
    Binetruy, P., Deffayet, C., Ellwanger, U., Langlois, D.: Brane cosmological evolution in a bulk with cosmological constant. Phys. Lett. B 477, 285 (2000) [arXiv:hep-th/9910219]Google Scholar
  96. 96.
    Maartens, R., Majerotto, E.: Observational constraints on self-accelerating cosmology. Phys. Rev. D 74, 023004 (2006) [arXiv:astro-ph/0603353]Google Scholar
  97. 97.
    Lue, A., Scoccimarro, R., Starkman, G.D.: Probing Newton’s constant on vast scales: DGP gravity, cosmic acceleration and large scale structure. Phys. Rev. D 69, 124015 (2004) [arXiv:astro-ph/0401515]Google Scholar
  98. 98.
    Lue, A., Starkman, G.: Gravitational leakage into extra dimensions: probing dark energy using local gravity. Phys. Rev. D 67, 064002 (2003) [arXiv:astro-ph/0212083]Google Scholar
  99. 99.
    Linder, E.V.: Cosmic growth history and expansion history. Phys. Rev. D 72, 043529 (2005) [arXiv:astro-ph/0507263]Google Scholar
  100. 100.
    Koyama, K., Maartens, R.: Structure formation in the DGP cosmological model. JCAP 0610, 016 (2006) [arXiv:astro-ph/0511634]Google Scholar
  101. 101.
    Cardoso, A., Koyama, K., Seahra, S.S., Silva, F.P.: Cosmological perturbations in the DGP braneworld: numeric solution. arXiv:0711.2563Google Scholar
  102. 102.
    Kunz, M., Sapone, D.: Dark energy versus modified gravity. Phys. Rev. Lett. 98, 121301 (2007) [aXiv:astro-ph/0612452]Google Scholar
  103. 103.
    Gorbunov, D., Koyama, K., Sibiryakov, S.: More on ghosts in DGP model. Phys. Rev. D73, 044016 (2006) [arXiv:hep-th/0512097]Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Départment de Physique ThéoriqueUniversité de GenèveGenève 4Switzerland
  2. 2.Institute of Cosmology and GravitationUniversity of PortsmouthPortsmouthUK

Personalised recommendations