Advertisement

General Relativity and Gravitation

, Volume 40, Issue 2–3, pp 269–284 | Cite as

Is the evidence for dark energy secure?

  • Subir SarkarEmail author
Research Article

Abstract

Several kinds of astronomical observations, interpreted in the framework of the standard Friedmann–Robertson–Walker cosmology, have indicated that our universe is dominated by a Cosmological Constant. The dimming of distant Type Ia supernovae suggests that the expansion rate is accelerating, as if driven by vacuum energy, and this has been indirectly substantiated through studies of angular anisotropies in the cosmic microwave background (CMB) and of spatial correlations in the large-scale structure (LSS) of galaxies. However there is no compelling direct evidence yet for (the dynamical effects of) dark energy. The precision CMB data can be equally well fitted without dark energy if the spectrum of primordial density fluctuations is not quite scale-free and if the Hubble constant is lower globally than its locally measured value. The LSS data can also be satisfactorily fitted if there is a small component of hot dark matter, as would be provided by neutrinos of mass ∼0.5 eV. Although such an Einstein–de Sitter model cannot explain the SNe Ia Hubble diagram or the position of the “baryon acoustic oscillation” peak in the autocorrelation function of galaxies, it may be possible to do so, e.g. in an inhomogeneous Lemaitre–Tolman–Bondi cosmology where we are located in a void which is expanding faster than the average. Such alternatives may seem contrived but this must be weighed against our lack of any fundamental understanding of the inferred tiny energy scale of the dark energy. It may well be an artifact of an oversimplified cosmological model, rather than having physical reality.

Keywords

Cosmic microwave background Dark energy Inflation Large-scale structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams J.A., Ross G.G. and Sarkar S. (1997). Multiple inflation. Nucl. Phys. B 503: 405 CrossRefADSGoogle Scholar
  2. 2.
    Aguirre A.N. (1999). Dust versus cosmic acceleration. Astrophys. J. 512: L19 CrossRefADSGoogle Scholar
  3. 3.
    Allen S.W., Schmidt R.W., Ebeling H., Fabian A.C. and van Speybroeck L. (2004). Constraints on dark energy from Chandra observations of the largest relaxed galaxy clusters. Mon. Not. Roy. Astron. Soc. 353: 457 CrossRefADSGoogle Scholar
  4. 4.
    Alnes H., Amarzguioui M. and Gron O. (2006). An inhomogeneous alternative to dark energy?. Phys. Rev. D 73: 083519 CrossRefADSGoogle Scholar
  5. 5.
    Alnes H. and Amarzguioui M. (2007). The supernova Hubble diagram for off-center observers in a spherically symmetric inhomogeneous universe. Phys. Rev. D 75: 023506 CrossRefADSGoogle Scholar
  6. 6.
    Astier, P., et al.: [The SNLS Collaboration], The supernova legacy survey: measurement of OmegaM, OmegaLambda and w from the first year data set. Astron. Astrophys. 447, 31 (2006)Google Scholar
  7. 7.
    Bahcall N., Ostriker J.P., Perlmutter S. and Steinhardt P.J. (1999). The cosmic triangle: revealing the state of the universe. Science 28: 1481 CrossRefADSGoogle Scholar
  8. 8.
    Barris, B.J., et al.: 23 high redshift supernovae from the IfA deep survey: doubling the SN sample at z > 0.7. Astrophys. J. 602, 571 (2004)Google Scholar
  9. 9.
    Biswas, T., Mansouri, R., Notari, A.: Nonlinear structure formation and apparent acceleration: an investigation. arXiv:astro-ph/0606703Google Scholar
  10. 10.
    Blanchard A., Douspis M., Rowan-Robinson M. and Sarkar S. (2003). An alternative to the cosmological ‘concordance model’. Astron. Astrophys. 412: 35 zbMATHCrossRefADSGoogle Scholar
  11. 11.
    Blanchard A., Douspis M., Rowan-Robinson M. and Sarkar S. (2006). Large-scale galaxy correlations as a test for dark energy. Astron. Astrophys. 449: 925 CrossRefADSGoogle Scholar
  12. 12.
    Bonamente M., Joy M.K., La Roque S.J., Carlstrom J.E., Reese E.D. and Dawson K.S. (2006). Measurement of the cosmic distance scale from Chandra X-ray imaging and Sunyaev–Zel’dovich Effect mapping of high redshift clusters of galaxies. Astrophys. J. 647: 25 CrossRefADSGoogle Scholar
  13. 13.
    Bond J.R., Crittenden R., Davis R.L., Efstathiou G. and Steinhardt P.J. (1994). Measuring cosmological parameters with cosmic microwave background experiments. Phys. Rev. Lett. 72: 13 CrossRefADSGoogle Scholar
  14. 14.
    Bond J.R., Efstathiou G. and Tegmark M. (1997). Forecasting cosmic parameter errors from microwave background anisotropy experiments. Mon. Not. Roy. Astron. Soc. 291: L33 ADSGoogle Scholar
  15. 15.
    Carroll S.M., Press W.H. and Turner E.L. (1992). The cosmological constant. Ann. Rev. Astron. Astrophys. 30: 499 CrossRefADSGoogle Scholar
  16. 16.
    Cayrel, R., et al.: Measurement of stellar age from uranium decay. Nature 409, 691 (2001)Google Scholar
  17. 17.
    Celerier M.N. (2000). Do we really see a cosmological constant in the supernovae data?. Astron. Astrophys. 353: 63 ADSGoogle Scholar
  18. 18.
    Choudhury T.R. and Padmanabhan T. (2005). A theoretician’s analysis of the supernova data and the limitations in determining the nature of dark energy II: Results for latest data. Astron. Astrophys. 429: 807 zbMATHCrossRefADSGoogle Scholar
  19. 19.
    Cole, S., et al.: [The 2dFGRS Collaboration], The 2dF galaxy redshift survey: power-spectrum analysis of the final dataset and cosmological implications. Mon. Not. Roy. Astron. Soc. 362, 505 (2005)Google Scholar
  20. 20.
    Conley, A. Carlberg, R.G., Guy, J., Howell, D.A., Jha, S., Riess, A.G., Sullivan, M.: Is there evidence for a Hubble bubble? The nature of SN Ia colors and dust in external galaxies. arXiv:0705.0367 [astro-ph]Google Scholar
  21. 21.
    Cooray A. and Caldwell R.R. (2006). Large-scale bulk motions complicate the Hubble Diagram. Phys. Rev. D 73: 103002 CrossRefADSGoogle Scholar
  22. 22.
    Copeland E.J., Sami M. and Tsujikawa S. (2006). Dynamics of dark energy. Int. J. Mod. Phys. D 15: 1753 zbMATHCrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Cyburt R.H., Fields B.D., Olive K.A. and Skillman E. (2005). New BBN limits on physics beyond the Standard Model from He-4. Astropart. Phys. 23: 313 CrossRefADSGoogle Scholar
  24. 24.
    de Bernardis, P., et al.: [Boomerang Collaboration], A flat universe from high-resolution maps of the cosmic microwave background radiation. Nature 404, 955 (2000)Google Scholar
  25. 25.
    Douglas M.R. and Kachru S. (2007). Flux compactification. Rev. Mod. Phys. 79: 733 CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Drell P.S., Loredo T.J. and Wasserman I. (2000). Type Ia supernovae, evolution, and the cosmological constant. Astrophys. J. 530: 593 CrossRefADSGoogle Scholar
  27. 27.
    Drexlin, G.: [KATRIN Collaboration], KATRIN: Direct measurement of a sub-eV neutrino mass. Nucl. Phys. Proc. Suppl. 145, 263 (2005)Google Scholar
  28. 28.
    Efstathiou G. and Bond J.R. (1999). Cosmic confusion: degeneracies among cosmological parameters derived from measurements of microwave background anisotropies. Mon. Not. Roy. Astron. Soc. 304: 75 CrossRefADSGoogle Scholar
  29. 29.
    Einstein, A.: Sitzungsber. Preuss. Akad. Wiss. phys.-math. Klasse VI 142 (1917)Google Scholar
  30. 30.
    Eisenstein, D.J., et al.: [SDSS Collaboration], Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 633, 560 (2005)Google Scholar
  31. 31.
    Elgaroy O. and Lahav O. (2003). The role of priors in deriving upper limits on neutrino masses from the 2dFGRS and WMAP. JCAP 0304: 004 ADSGoogle Scholar
  32. 32.
    Enqvist K. and Mattsson T. (2007). The effect of inhomogeneous expansion on the supernova observations. JCAP 0702: 019 ADSGoogle Scholar
  33. 33.
    Fields, B., Sarkar, S.: Big-bang nucleosynthesis (PDG mini-review). arXiv:astro-ph/0601514Google Scholar
  34. 34.
    Freedman, W.L., et al.: Final results from the Hubble Space Telescope Key Project to measure the Hubble constant. Astrophys. J. 55, 47 (2001)Google Scholar
  35. 35.
    Frith W.J., Metcalfe N. and Shanks T. (2006). New H-band galaxy number counts: a large local hole in the galaxy distribution?. Mon. Not. Roy. Astron. Soc. 371: 1601 CrossRefADSGoogle Scholar
  36. 36.
    Geller M.J. and Huchra J.P. (1989). Mapping the universe. Science 246: 897 CrossRefADSGoogle Scholar
  37. 37.
    Hanany, S., et al.: MAXIMA-1: A measurement of the cosmic microwave background anisotropy on angular scales of 10 arcminutes to 5 degrees. Astrophys. J. 545, L5 (2000)Google Scholar
  38. 38.
    Hillebrandt W. and Niemeyer J.C. (2000). Type Ia supernova explosion models. Ann. Rev. Astron. Astrophys. 38: 191 CrossRefADSGoogle Scholar
  39. 39.
    Hu W., Sugiyama N. and Silk J. (1997). The physics of microwave background anisotropies. Nature 386: 37 CrossRefADSGoogle Scholar
  40. 40.
    Hui L. and Greene P.B. (2006). Correlated fluctuations in luminosity distance and the importance of peculiar motion in supernova surveys. Phys. Rev. D 73: 123526 CrossRefADSGoogle Scholar
  41. 41.
    Hunt, P., Sarkar, S.: Multiple inflation and the WMAP ‘glitches’ II. Data analysis and cosmological parameter extraction. arXiv:0706.2443 [astro-ph]Google Scholar
  42. 42.
    Inoue K.T. and Silk J. (2006). Local voids as the origin of large-angle cosmic microwave background anomalies. Astrophys. J. 648: 23 CrossRefADSGoogle Scholar
  43. 43.
    Jackson, N.: The Hubble constant. arXiv:0709.3924 [astro-ph]Google Scholar
  44. 44.
    Jena, T., et al.: A concordance model of the Lyman-alpha Forest at z = 1.95. Mon. Not. Roy. Astron. Soc. 361, 70 (2005)Google Scholar
  45. 45.
    Jha S., Riess A.G. and Kirshner R.P. (2007). Improved distances to Type Ia supernovae with Multicolor Light Curve Shapes: MLCS2k2. Astrophys. J. 659: 122 CrossRefADSGoogle Scholar
  46. 46.
    Jungman G., Kamionkowski M., Kosowsky A. and Spergel D.N. (1996). Cosmological parameter determination with microwave background maps. Phys. Rev. D 54: 1332 CrossRefADSGoogle Scholar
  47. 47.
    Kochanek C.S. and Schechter P.L. (2004). The Hubble constant from gravitational lens time delays. In: Freedman, W. (eds) Measuring and Modeling the Universe, pp 117. Cambridge University Press, Cambridge Google Scholar
  48. 48.
    Koyama, K.: Ghosts in the self-accelerating universe. arXiv:0709.2399 [hep-th]Google Scholar
  49. 49.
    Krasinski A. (1997). Inhomogeneous Cosmological Models. Cambridge University Press, Cambridge zbMATHGoogle Scholar
  50. 50.
    Krauss L.M. and Chaboyer B. (2003). Age estimates of globular clusters in the Milky Way: constraints on cosmology. Science 299: 65 CrossRefADSGoogle Scholar
  51. 51.
    Leibundgut B. (2000). Type Ia Supernovae. Astron. Astrophys. Rev. 10: 179 CrossRefADSGoogle Scholar
  52. 52.
    Lue A. (2006). The phenomenology of Dvali-Gabadadze-Porrati cosmologies. Phys. Rept. 423: 1 CrossRefADSMathSciNetGoogle Scholar
  53. 53.
    McClure M.L. and Dyer C.C. (2007). Anisotropy in the Hubble constant as observed in the HST extragalactic distance scale Key Project results. New Astron. 12: 533 CrossRefADSGoogle Scholar
  54. 54.
    Nobbenhuis S. (2006). Categorizing different approaches to the cosmological constant problem. Found. Phys. 36: 613 zbMATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Padmanabhan T. (2003). Cosmological constant: the weight of the vacuum. Phys. Rept. 380: 235 zbMATHCrossRefADSMathSciNetGoogle Scholar
  56. 56.
    Peebles, P.J.E.: The cosmological tests. astro-ph/0102327Google Scholar
  57. 57.
    Peebles P.J.E. and Ratra B. (2003). The cosmological constant and dark energy. Rev. Mod. Phys. 75: 559 CrossRefADSMathSciNetGoogle Scholar
  58. 58.
    Perlmutter, S., et al.: [Supernova Cosmology Project Collaboration], Measurements of Omega and Lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999)Google Scholar
  59. 59.
    Reese, E.D.: Measuring the Hubble constant with the Sunyaev–Zeldovich effect. In: Freedman, W. (ed.) Measuring and Modeling the Universe, p. 138. Cambridge University Press, Cambridge (2004)Google Scholar
  60. 60.
    Riess, A.G., et al.: [Supernova Search Team Collaboration], Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)Google Scholar
  61. 61.
    Riess, A.G., et al.: [Supernova Search Team Collaboration], Type Ia supernova discoveries at z >  1 from the Hubble Space Telescope: evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 607, 665 (2004)Google Scholar
  62. 62.
    Rowan-Robinson, M.: Cosmological parameters: do we already know the final answer? In: Spooner, N., Kudryavtsev, V. (eds.) Third International Conference on Identification of Dark Matter. World Scientific, Singapore (2001)Google Scholar
  63. 63.
    Rowan-Robinson M. (2002). Do type Ia supernovae prove Lambda >  0?. Mon. Not. Roy. Astron. Soc. 332: 352 CrossRefADSGoogle Scholar
  64. 64.
    Rudnick, L., Brown, S., Williams, L.R.: Extragalactic radio sources and the WMAP cold spot. arXiv:0704.0908 [astro-ph]Google Scholar
  65. 65.
    Saha P., Coles J., Maccio A.V. and Williams L.L.R. (2006). The Hubble time inferred from 10 time-delay lenses. Astrophys. J. 650: L17 CrossRefADSGoogle Scholar
  66. 66.
    Sahni V. and Starobinsky A.A. (2000). The case for a positive cosmological Lambda-term. Int. J. Mod. Phys. D 9: 373 ADSGoogle Scholar
  67. 67.
    Sandage M.A., Tammann G.A., Saha A., Reindl B., Macchetto F.D. and Panagia N. (2006). The Hubble constant: a summary of the HST program for the luminosity calibration of Type Ia supernovae by means of cepheids. Astrophys. J. 653: 843 CrossRefADSGoogle Scholar
  68. 68.
    Schwarz, D.J., Weinhorst, B.: (An)isotropy of the Hubble diagram: comparing hemispheres. arXiv:0706.0165 [astro-ph]Google Scholar
  69. 69.
    Spergel D.N., et al.: [WMAP Collaboration], First year Wilkinson Microwave Anisotropy Probe observations: determination of cosmological parameters. Astrophys. J. Suppl. 148, 175 (2003)Google Scholar
  70. 70.
    Spergel, D.N., et al.: [WMAP Collaboration], Wilkinson Microwave Anisotropy Probe three year results: implications for cosmology. Astrophys. J. Suppl. 170, 377 (2007)Google Scholar
  71. 71.
    Straumann, N.: On the cosmological constant problems and the astronomical evidence for a homogeneous energy density with negative pressure. In: Duplantier, B., Rivasseu, V. (eds.) Séminaire Poincaré: Vacuum Energy—Renormalization, p. 7. Birkhäuser-Verlag, Basel (2003)Google Scholar
  72. 72.
    Tegmark, M., et al.: [SDSS Collaboration], The 3D power spectrum of galaxies from the SDSS. Astrophys. J. 606, 702 (2004)Google Scholar
  73. 73.
    Tegmark M., Aguirre A., Rees M. and Wilczek F. (2006). Dimensionless constants, cosmology and other dark matters. Phys. Rev. D 73: 023505 CrossRefADSGoogle Scholar
  74. 74.
    Tomita K. (2000). Bulk flows and cosmic microwave background dipole anisotropy in cosmological void models. Astrophys. J. 529: 26 CrossRefADSGoogle Scholar
  75. 75.
    Tomita K. (2001). Anisotropy of the Hubble constant in a cosmological model with a local void on scales of 200 Mpc. Prog. Theor. Phys. 105: 419 CrossRefADSGoogle Scholar
  76. 76.
    Tomita K. (2001). A local void and the accelerating universe. Mon. Not. Roy. Astron. Soc. 326: 287 CrossRefADSGoogle Scholar
  77. 77.
    Tomita K. (2001). Analyses of Type Ia Supernova data in cosmological models with a local void. Prog. Theor. Phys. 106: 929 CrossRefADSGoogle Scholar
  78. 78.
    Tomita K. (2003). Dipole anisotropies of IRAS galaxies and the contribution of a large-scale local void. Astrophys. J. 584: 580 CrossRefADSGoogle Scholar
  79. 79.
    Tonry J.L., et al.: [Supernova Search Team Collaboration], Cosmological results from high-z supernovae. Astrophys. J. 594, 1 (2003)Google Scholar
  80. 80.
    Van Waerbeke L., Mellier Y. and Hoekstra H. (2005). Dealing with systematics in cosmic shear studies: new results from the VIRMOS-Descart survey. Astron. Astrophys. 429: 75 CrossRefADSGoogle Scholar
  81. 81.
    Wang Y., Spergel D.N. and Turner E.L. (1998). Implications of cosmic microwave background anisotropies for large scale variations in Hubble’s constant. Astrophys. J. 498: 1 CrossRefADSGoogle Scholar
  82. 82.
    Wood-Vasey, W.M., et al.: Observational constraints on the nature of the dark energy: first cosmological results from the ESSENCE supernova survey. Astrophys. J. L666, 694 (2007)CrossRefADSGoogle Scholar
  83. 83.
    Weinberg S. (1989). The cosmological constant problem. Rev. Mod. Phys. 61: 1 CrossRefADSMathSciNetGoogle Scholar
  84. 84.
    Weinberg, S.: Theories of the cosmological constant. In: Cline D. (ed.) Sources and detection of dark matter and dark energy in the universe. Springer, Berlin, p. 18 (2000)Google Scholar
  85. 85.
    Weinberg S. (2000). A priori probability distribution of the cosmological constant. Phys. Rev. D 61: 103505 CrossRefADSMathSciNetGoogle Scholar
  86. 86.
    Witten, E.: The cosmological constant from the viewpoint of string theory. In: Cline, D. (ed.) Sources and detection of dark matter and dark energy in the universe, p. 27. Springer, Berlin (2000)Google Scholar
  87. 87.
    Yao, W.M., et al.: [Particle Data Group], Review of particle physics. J. Phys. G 33, 1 (2006)CrossRefADSGoogle Scholar
  88. 88.
    Zehavi I., Riess A.G., Kirshner R.P. and Dekel A. (1998). A local Hubble bubble from SNe Ia?. Astrophys. J. 503: 483 CrossRefADSGoogle Scholar
  89. 89.
    Zwirner, F.: Extensions of the standard model. In: International europhysics conference on high energy physics, Brussels, p. 943. World Scientific, Singapore (1996)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordUK

Personalised recommendations