Is the evidence for dark energy secure?
- First Online:
- Received:
- Accepted:
Abstract
Several kinds of astronomical observations, interpreted in the framework of the standard Friedmann–Robertson–Walker cosmology, have indicated that our universe is dominated by a Cosmological Constant. The dimming of distant Type Ia supernovae suggests that the expansion rate is accelerating, as if driven by vacuum energy, and this has been indirectly substantiated through studies of angular anisotropies in the cosmic microwave background (CMB) and of spatial correlations in the large-scale structure (LSS) of galaxies. However there is no compelling direct evidence yet for (the dynamical effects of) dark energy. The precision CMB data can be equally well fitted without dark energy if the spectrum of primordial density fluctuations is not quite scale-free and if the Hubble constant is lower globally than its locally measured value. The LSS data can also be satisfactorily fitted if there is a small component of hot dark matter, as would be provided by neutrinos of mass ∼0.5 eV. Although such an Einstein–de Sitter model cannot explain the SNe Ia Hubble diagram or the position of the “baryon acoustic oscillation” peak in the autocorrelation function of galaxies, it may be possible to do so, e.g. in an inhomogeneous Lemaitre–Tolman–Bondi cosmology where we are located in a void which is expanding faster than the average. Such alternatives may seem contrived but this must be weighed against our lack of any fundamental understanding of the inferred tiny energy scale of the dark energy. It may well be an artifact of an oversimplified cosmological model, rather than having physical reality.
Keywords
Cosmic microwave background Dark energy Inflation Large-scale structurePreview
Unable to display preview. Download preview PDF.
References
- 1.Adams J.A., Ross G.G. and Sarkar S. (1997). Multiple inflation. Nucl. Phys. B 503: 405 CrossRefADSGoogle Scholar
- 2.Aguirre A.N. (1999). Dust versus cosmic acceleration. Astrophys. J. 512: L19 CrossRefADSGoogle Scholar
- 3.Allen S.W., Schmidt R.W., Ebeling H., Fabian A.C. and van Speybroeck L. (2004). Constraints on dark energy from Chandra observations of the largest relaxed galaxy clusters. Mon. Not. Roy. Astron. Soc. 353: 457 CrossRefADSGoogle Scholar
- 4.Alnes H., Amarzguioui M. and Gron O. (2006). An inhomogeneous alternative to dark energy?. Phys. Rev. D 73: 083519 CrossRefADSGoogle Scholar
- 5.Alnes H. and Amarzguioui M. (2007). The supernova Hubble diagram for off-center observers in a spherically symmetric inhomogeneous universe. Phys. Rev. D 75: 023506 CrossRefADSGoogle Scholar
- 6.Astier, P., et al.: [The SNLS Collaboration], The supernova legacy survey: measurement of OmegaM, OmegaLambda and w from the first year data set. Astron. Astrophys. 447, 31 (2006)Google Scholar
- 7.Bahcall N., Ostriker J.P., Perlmutter S. and Steinhardt P.J. (1999). The cosmic triangle: revealing the state of the universe. Science 28: 1481 CrossRefADSGoogle Scholar
- 8.Barris, B.J., et al.: 23 high redshift supernovae from the IfA deep survey: doubling the SN sample at z > 0.7. Astrophys. J. 602, 571 (2004)Google Scholar
- 9.Biswas, T., Mansouri, R., Notari, A.: Nonlinear structure formation and apparent acceleration: an investigation. arXiv:astro-ph/0606703Google Scholar
- 10.Blanchard A., Douspis M., Rowan-Robinson M. and Sarkar S. (2003). An alternative to the cosmological ‘concordance model’. Astron. Astrophys. 412: 35 MATHCrossRefADSGoogle Scholar
- 11.Blanchard A., Douspis M., Rowan-Robinson M. and Sarkar S. (2006). Large-scale galaxy correlations as a test for dark energy. Astron. Astrophys. 449: 925 CrossRefADSGoogle Scholar
- 12.Bonamente M., Joy M.K., La Roque S.J., Carlstrom J.E., Reese E.D. and Dawson K.S. (2006). Measurement of the cosmic distance scale from Chandra X-ray imaging and Sunyaev–Zel’dovich Effect mapping of high redshift clusters of galaxies. Astrophys. J. 647: 25 CrossRefADSGoogle Scholar
- 13.Bond J.R., Crittenden R., Davis R.L., Efstathiou G. and Steinhardt P.J. (1994). Measuring cosmological parameters with cosmic microwave background experiments. Phys. Rev. Lett. 72: 13 CrossRefADSGoogle Scholar
- 14.Bond J.R., Efstathiou G. and Tegmark M. (1997). Forecasting cosmic parameter errors from microwave background anisotropy experiments. Mon. Not. Roy. Astron. Soc. 291: L33 ADSGoogle Scholar
- 15.Carroll S.M., Press W.H. and Turner E.L. (1992). The cosmological constant. Ann. Rev. Astron. Astrophys. 30: 499 CrossRefADSGoogle Scholar
- 16.Cayrel, R., et al.: Measurement of stellar age from uranium decay. Nature 409, 691 (2001)Google Scholar
- 17.Celerier M.N. (2000). Do we really see a cosmological constant in the supernovae data?. Astron. Astrophys. 353: 63 ADSGoogle Scholar
- 18.Choudhury T.R. and Padmanabhan T. (2005). A theoretician’s analysis of the supernova data and the limitations in determining the nature of dark energy II: Results for latest data. Astron. Astrophys. 429: 807 MATHCrossRefADSGoogle Scholar
- 19.Cole, S., et al.: [The 2dFGRS Collaboration], The 2dF galaxy redshift survey: power-spectrum analysis of the final dataset and cosmological implications. Mon. Not. Roy. Astron. Soc. 362, 505 (2005)Google Scholar
- 20.Conley, A. Carlberg, R.G., Guy, J., Howell, D.A., Jha, S., Riess, A.G., Sullivan, M.: Is there evidence for a Hubble bubble? The nature of SN Ia colors and dust in external galaxies. arXiv:0705.0367 [astro-ph]Google Scholar
- 21.Cooray A. and Caldwell R.R. (2006). Large-scale bulk motions complicate the Hubble Diagram. Phys. Rev. D 73: 103002 CrossRefADSGoogle Scholar
- 22.Copeland E.J., Sami M. and Tsujikawa S. (2006). Dynamics of dark energy. Int. J. Mod. Phys. D 15: 1753 MATHCrossRefADSMathSciNetGoogle Scholar
- 23.Cyburt R.H., Fields B.D., Olive K.A. and Skillman E. (2005). New BBN limits on physics beyond the Standard Model from He-4. Astropart. Phys. 23: 313 CrossRefADSGoogle Scholar
- 24.de Bernardis, P., et al.: [Boomerang Collaboration], A flat universe from high-resolution maps of the cosmic microwave background radiation. Nature 404, 955 (2000)Google Scholar
- 25.Douglas M.R. and Kachru S. (2007). Flux compactification. Rev. Mod. Phys. 79: 733 CrossRefADSMathSciNetGoogle Scholar
- 26.Drell P.S., Loredo T.J. and Wasserman I. (2000). Type Ia supernovae, evolution, and the cosmological constant. Astrophys. J. 530: 593 CrossRefADSGoogle Scholar
- 27.Drexlin, G.: [KATRIN Collaboration], KATRIN: Direct measurement of a sub-eV neutrino mass. Nucl. Phys. Proc. Suppl. 145, 263 (2005)Google Scholar
- 28.Efstathiou G. and Bond J.R. (1999). Cosmic confusion: degeneracies among cosmological parameters derived from measurements of microwave background anisotropies. Mon. Not. Roy. Astron. Soc. 304: 75 CrossRefADSGoogle Scholar
- 29.Einstein, A.: Sitzungsber. Preuss. Akad. Wiss. phys.-math. Klasse VI 142 (1917)Google Scholar
- 30.Eisenstein, D.J., et al.: [SDSS Collaboration], Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 633, 560 (2005)Google Scholar
- 31.Elgaroy O. and Lahav O. (2003). The role of priors in deriving upper limits on neutrino masses from the 2dFGRS and WMAP. JCAP 0304: 004 ADSGoogle Scholar
- 32.Enqvist K. and Mattsson T. (2007). The effect of inhomogeneous expansion on the supernova observations. JCAP 0702: 019 ADSGoogle Scholar
- 33.Fields, B., Sarkar, S.: Big-bang nucleosynthesis (PDG mini-review). arXiv:astro-ph/0601514Google Scholar
- 34.Freedman, W.L., et al.: Final results from the Hubble Space Telescope Key Project to measure the Hubble constant. Astrophys. J. 55, 47 (2001)Google Scholar
- 35.Frith W.J., Metcalfe N. and Shanks T. (2006). New H-band galaxy number counts: a large local hole in the galaxy distribution?. Mon. Not. Roy. Astron. Soc. 371: 1601 CrossRefADSGoogle Scholar
- 36.Geller M.J. and Huchra J.P. (1989). Mapping the universe. Science 246: 897 CrossRefADSGoogle Scholar
- 37.Hanany, S., et al.: MAXIMA-1: A measurement of the cosmic microwave background anisotropy on angular scales of 10 arcminutes to 5 degrees. Astrophys. J. 545, L5 (2000)Google Scholar
- 38.Hillebrandt W. and Niemeyer J.C. (2000). Type Ia supernova explosion models. Ann. Rev. Astron. Astrophys. 38: 191 CrossRefADSGoogle Scholar
- 39.Hu W., Sugiyama N. and Silk J. (1997). The physics of microwave background anisotropies. Nature 386: 37 CrossRefADSGoogle Scholar
- 40.Hui L. and Greene P.B. (2006). Correlated fluctuations in luminosity distance and the importance of peculiar motion in supernova surveys. Phys. Rev. D 73: 123526 CrossRefADSGoogle Scholar
- 41.Hunt, P., Sarkar, S.: Multiple inflation and the WMAP ‘glitches’ II. Data analysis and cosmological parameter extraction. arXiv:0706.2443 [astro-ph]Google Scholar
- 42.Inoue K.T. and Silk J. (2006). Local voids as the origin of large-angle cosmic microwave background anomalies. Astrophys. J. 648: 23 CrossRefADSGoogle Scholar
- 43.Jackson, N.: The Hubble constant. arXiv:0709.3924 [astro-ph]Google Scholar
- 44.Jena, T., et al.: A concordance model of the Lyman-alpha Forest at z = 1.95. Mon. Not. Roy. Astron. Soc. 361, 70 (2005)Google Scholar
- 45.Jha S., Riess A.G. and Kirshner R.P. (2007). Improved distances to Type Ia supernovae with Multicolor Light Curve Shapes: MLCS2k2. Astrophys. J. 659: 122 CrossRefADSGoogle Scholar
- 46.Jungman G., Kamionkowski M., Kosowsky A. and Spergel D.N. (1996). Cosmological parameter determination with microwave background maps. Phys. Rev. D 54: 1332 CrossRefADSGoogle Scholar
- 47.Kochanek C.S. and Schechter P.L. (2004). The Hubble constant from gravitational lens time delays. In: Freedman, W. (eds) Measuring and Modeling the Universe, pp 117. Cambridge University Press, Cambridge Google Scholar
- 48.Koyama, K.: Ghosts in the self-accelerating universe. arXiv:0709.2399 [hep-th]Google Scholar
- 49.Krasinski A. (1997). Inhomogeneous Cosmological Models. Cambridge University Press, Cambridge MATHGoogle Scholar
- 50.Krauss L.M. and Chaboyer B. (2003). Age estimates of globular clusters in the Milky Way: constraints on cosmology. Science 299: 65 CrossRefADSGoogle Scholar
- 51.Leibundgut B. (2000). Type Ia Supernovae. Astron. Astrophys. Rev. 10: 179 CrossRefADSGoogle Scholar
- 52.Lue A. (2006). The phenomenology of Dvali-Gabadadze-Porrati cosmologies. Phys. Rept. 423: 1 CrossRefADSMathSciNetGoogle Scholar
- 53.McClure M.L. and Dyer C.C. (2007). Anisotropy in the Hubble constant as observed in the HST extragalactic distance scale Key Project results. New Astron. 12: 533 CrossRefADSGoogle Scholar
- 54.Nobbenhuis S. (2006). Categorizing different approaches to the cosmological constant problem. Found. Phys. 36: 613 MATHCrossRefMathSciNetGoogle Scholar
- 55.Padmanabhan T. (2003). Cosmological constant: the weight of the vacuum. Phys. Rept. 380: 235 MATHCrossRefADSMathSciNetGoogle Scholar
- 56.Peebles, P.J.E.: The cosmological tests. astro-ph/0102327Google Scholar
- 57.Peebles P.J.E. and Ratra B. (2003). The cosmological constant and dark energy. Rev. Mod. Phys. 75: 559 CrossRefADSMathSciNetGoogle Scholar
- 58.Perlmutter, S., et al.: [Supernova Cosmology Project Collaboration], Measurements of Omega and Lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999)Google Scholar
- 59.Reese, E.D.: Measuring the Hubble constant with the Sunyaev–Zeldovich effect. In: Freedman, W. (ed.) Measuring and Modeling the Universe, p. 138. Cambridge University Press, Cambridge (2004)Google Scholar
- 60.Riess, A.G., et al.: [Supernova Search Team Collaboration], Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)Google Scholar
- 61.Riess, A.G., et al.: [Supernova Search Team Collaboration], Type Ia supernova discoveries at z > 1 from the Hubble Space Telescope: evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 607, 665 (2004)Google Scholar
- 62.Rowan-Robinson, M.: Cosmological parameters: do we already know the final answer? In: Spooner, N., Kudryavtsev, V. (eds.) Third International Conference on Identification of Dark Matter. World Scientific, Singapore (2001)Google Scholar
- 63.Rowan-Robinson M. (2002). Do type Ia supernovae prove Lambda > 0?. Mon. Not. Roy. Astron. Soc. 332: 352 CrossRefADSGoogle Scholar
- 64.Rudnick, L., Brown, S., Williams, L.R.: Extragalactic radio sources and the WMAP cold spot. arXiv:0704.0908 [astro-ph]Google Scholar
- 65.Saha P., Coles J., Maccio A.V. and Williams L.L.R. (2006). The Hubble time inferred from 10 time-delay lenses. Astrophys. J. 650: L17 CrossRefADSGoogle Scholar
- 66.Sahni V. and Starobinsky A.A. (2000). The case for a positive cosmological Lambda-term. Int. J. Mod. Phys. D 9: 373 ADSGoogle Scholar
- 67.Sandage M.A., Tammann G.A., Saha A., Reindl B., Macchetto F.D. and Panagia N. (2006). The Hubble constant: a summary of the HST program for the luminosity calibration of Type Ia supernovae by means of cepheids. Astrophys. J. 653: 843 CrossRefADSGoogle Scholar
- 68.Schwarz, D.J., Weinhorst, B.: (An)isotropy of the Hubble diagram: comparing hemispheres. arXiv:0706.0165 [astro-ph]Google Scholar
- 69.Spergel D.N., et al.: [WMAP Collaboration], First year Wilkinson Microwave Anisotropy Probe observations: determination of cosmological parameters. Astrophys. J. Suppl. 148, 175 (2003)Google Scholar
- 70.Spergel, D.N., et al.: [WMAP Collaboration], Wilkinson Microwave Anisotropy Probe three year results: implications for cosmology. Astrophys. J. Suppl. 170, 377 (2007)Google Scholar
- 71.Straumann, N.: On the cosmological constant problems and the astronomical evidence for a homogeneous energy density with negative pressure. In: Duplantier, B., Rivasseu, V. (eds.) Séminaire Poincaré: Vacuum Energy—Renormalization, p. 7. Birkhäuser-Verlag, Basel (2003)Google Scholar
- 72.Tegmark, M., et al.: [SDSS Collaboration], The 3D power spectrum of galaxies from the SDSS. Astrophys. J. 606, 702 (2004)Google Scholar
- 73.Tegmark M., Aguirre A., Rees M. and Wilczek F. (2006). Dimensionless constants, cosmology and other dark matters. Phys. Rev. D 73: 023505 CrossRefADSGoogle Scholar
- 74.Tomita K. (2000). Bulk flows and cosmic microwave background dipole anisotropy in cosmological void models. Astrophys. J. 529: 26 CrossRefADSGoogle Scholar
- 75.Tomita K. (2001). Anisotropy of the Hubble constant in a cosmological model with a local void on scales of 200 Mpc. Prog. Theor. Phys. 105: 419 CrossRefADSGoogle Scholar
- 76.Tomita K. (2001). A local void and the accelerating universe. Mon. Not. Roy. Astron. Soc. 326: 287 CrossRefADSGoogle Scholar
- 77.Tomita K. (2001). Analyses of Type Ia Supernova data in cosmological models with a local void. Prog. Theor. Phys. 106: 929 CrossRefADSGoogle Scholar
- 78.Tomita K. (2003). Dipole anisotropies of IRAS galaxies and the contribution of a large-scale local void. Astrophys. J. 584: 580 CrossRefADSGoogle Scholar
- 79.Tonry J.L., et al.: [Supernova Search Team Collaboration], Cosmological results from high-z supernovae. Astrophys. J. 594, 1 (2003)Google Scholar
- 80.Van Waerbeke L., Mellier Y. and Hoekstra H. (2005). Dealing with systematics in cosmic shear studies: new results from the VIRMOS-Descart survey. Astron. Astrophys. 429: 75 CrossRefADSGoogle Scholar
- 81.Wang Y., Spergel D.N. and Turner E.L. (1998). Implications of cosmic microwave background anisotropies for large scale variations in Hubble’s constant. Astrophys. J. 498: 1 CrossRefADSGoogle Scholar
- 82.Wood-Vasey, W.M., et al.: Observational constraints on the nature of the dark energy: first cosmological results from the ESSENCE supernova survey. Astrophys. J. L666, 694 (2007)CrossRefADSGoogle Scholar
- 83.Weinberg S. (1989). The cosmological constant problem. Rev. Mod. Phys. 61: 1 CrossRefADSMathSciNetGoogle Scholar
- 84.Weinberg, S.: Theories of the cosmological constant. In: Cline D. (ed.) Sources and detection of dark matter and dark energy in the universe. Springer, Berlin, p. 18 (2000)Google Scholar
- 85.Weinberg S. (2000). A priori probability distribution of the cosmological constant. Phys. Rev. D 61: 103505 CrossRefADSMathSciNetGoogle Scholar
- 86.Witten, E.: The cosmological constant from the viewpoint of string theory. In: Cline, D. (ed.) Sources and detection of dark matter and dark energy in the universe, p. 27. Springer, Berlin (2000)Google Scholar
- 87.Yao, W.M., et al.: [Particle Data Group], Review of particle physics. J. Phys. G 33, 1 (2006)CrossRefADSGoogle Scholar
- 88.Zehavi I., Riess A.G., Kirshner R.P. and Dekel A. (1998). A local Hubble bubble from SNe Ia?. Astrophys. J. 503: 483 CrossRefADSGoogle Scholar
- 89.Zwirner, F.: Extensions of the standard model. In: International europhysics conference on high energy physics, Brussels, p. 943. World Scientific, Singapore (1996)Google Scholar