Advertisement

General Relativity and Gravitation

, Volume 40, Issue 2–3, pp 221–248 | Cite as

Supernovae and cosmology

  • Bruno LeibundgutEmail author
Research Article

Abstract

The extreme luminosity and their fairly unique temporal behaviour have made supernovae a superb tool to measure distances in the universe. As complex astrophysical events they provide interesting insights into explosion physics, explosive nucleosynthesis, hydrodynamics of the explosion and radiation transport. They are an end product of stellar evolution and provide clues to the stellar composition. Since they can be observed at large distances they have become critical probes to further explore astrophysical effects, like dust properties in external galaxies and the star formation history of galaxies. Some of the astrophysics interferes with the cosmological applications of supernovae. The local velocity field, distorted by the gravitational attraction of the local large scale structure, and the reddening law appear at the moment the major limitations in the accuracy with which cosmological parameters can be determined. These absorption effects can introduce a secondary bias into the observations of the distant supernovae, which needs to be carefully evaluated. Supernovae have been used for the measurement of the Hubble constant, i.e. the current expansion rate of the universe, and the accelerated cosmic expansion directly inferred from the apparent faintness of the distant supernovae.

Keywords

Dark Energy Light Curve Light Curf Hubble Constant Host Galaxy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albrecht, A., et al.: NSF-NASA-DOE Report of the Dark Energy Task Force. http://www.nsf.gov/mps/ast/detf.jsp (also as astro-ph/0609591) (2006)
  2. 2.
    Aldering G., et al. (2006). ApJ 650: 510 ADSGoogle Scholar
  3. 3.
    Aguirre A.N. (1999a). ApJ 512: L19 ADSGoogle Scholar
  4. 4.
    Aguirre A.N. (1999b). ApJ 525: 583 ADSGoogle Scholar
  5. 5.
    Amanullah R., Mörtsell E. and Goobar A. (2003). A&A 397: 819 ADSGoogle Scholar
  6. 6.
    Arnett W.D. (1982). ApJ 253: 782 ADSGoogle Scholar
  7. 7.
    Arnett W.D., Branch D. and Wheeler J.C. (1985). Nature 314: 337 ADSGoogle Scholar
  8. 8.
    Arnett W.D., Bahcall J.N., Kirshner R.P. and Woosley S.E. (1989). ARA&A 27: 629 ADSGoogle Scholar
  9. 9.
    Astier P., et al. (2006). A&A 447: 31 ADSGoogle Scholar
  10. 10.
    Baade W. (1926). AN 228: 359 ADSGoogle Scholar
  11. 11.
    Baade W. and Zwicky F. (1934). Publ. Nat. Acad. Sci. 20: 254 ADSGoogle Scholar
  12. 12.
    Baade W. (1942). ApJ 46: 188 ADSGoogle Scholar
  13. 13.
    Barris B.J., et al. (2004). ApJ 602: 571 ADSGoogle Scholar
  14. 14.
    Barris B.J. and Tonry J.L. (2004). ApJ 602: 571 ADSGoogle Scholar
  15. 15.
    Baron E., et al. (2004). ApJ 616: L91 ADSGoogle Scholar
  16. 16.
    Benetti S., et al. (2004). MNRAS 348: 261 ADSGoogle Scholar
  17. 17.
    Benetti S., et al. (2005). ApJ 623: 1011 ADSGoogle Scholar
  18. 18.
    Benetti S., et al. (2006). ApJ 653: L129 ADSGoogle Scholar
  19. 19.
    Bertschinger E., et al. (1990). ApJ 364: 370 ADSGoogle Scholar
  20. 20.
    Blakeslee J.P., et al. (1999). ApJ 527: L73 ADSGoogle Scholar
  21. 21.
    Blinnikov S.I., et al. (2006). A&A 453: 229 ADSGoogle Scholar
  22. 22.
    Blondin S., et al. (2005). A&A 431: 757 ADSGoogle Scholar
  23. 23.
    Blondin S., et al. (2006). AJ 131: 1648 ADSGoogle Scholar
  24. 24.
    Blondin, S., et al.: in preparation (2007)Google Scholar
  25. 25.
    Branch D. (1992). ApJ 392: 35 ADSGoogle Scholar
  26. 26.
    Branch D. (1998). ARA&A 36: 17 ADSGoogle Scholar
  27. 27.
    Branch D. and Tammann G.A. (1992). ARA&A 30: 359 ADSGoogle Scholar
  28. 28.
    Branch D., Drucker W. and Jeffery D. (1988). ApJ 330: L117 ADSGoogle Scholar
  29. 29.
    Candia P., et al. (2003). PASP 115: 277 ADSGoogle Scholar
  30. 30.
    Cappellaro E., et al. (1997). A&A 328: 203 ADSGoogle Scholar
  31. 31.
    Carroll S.M., Press W.H. and Turner E.L. (1992). ARA&A 30: 499 ADSGoogle Scholar
  32. 32.
    Chevalier, R.A., Fransson, C.: In: Weiler, K. (ed) Supernovae and Gamma-ray Bursts, p. 171. Springer, Heidelberg (2003)Google Scholar
  33. 33.
    Chornock R., et al. (2006). PASP 118: 722 ADSGoogle Scholar
  34. 34.
    Chornock, R., Filippenko, A.V.: ApJ (in press) (astro-ph/0609405) (2007)Google Scholar
  35. 35.
    Clark D.J. and Stephenson F. (1977). The Historical Supernovae. Pergamon Press, New York Google Scholar
  36. 36.
    Clayton D.D. (1074). ApJ 188: 155 ADSGoogle Scholar
  37. 37.
    Clocchiatti A., et al. (2006). ApJ 642: 1 ADSGoogle Scholar
  38. 38.
    Coil A.L., et al. (2000). ApJ 544: L111 ADSGoogle Scholar
  39. 39.
    Cole S., et al. (2005). MNRAS 362: 505 ADSGoogle Scholar
  40. 40.
    Colgate S.A. and McKee C. (1969). ApJ 157: 623 ADSGoogle Scholar
  41. 41.
    Colgate S.A. (1979). ApJ 232: 404 ADSGoogle Scholar
  42. 42.
    Conley A., et al. (2006a). AJ 132: 1707 ADSGoogle Scholar
  43. 43.
    Conley A., et al. (2006b). ApJ 644: 1 ADSGoogle Scholar
  44. 44.
    Conley A., et al. (2007). ApJ 664: L13 ADSGoogle Scholar
  45. 45.
    Contardo G., Leibundgut B. and Vacca W.D. (2000). A&A 359: 876 ADSGoogle Scholar
  46. 46.
    Cooray A. and Caldwell R.R. (2006). Phys. Rev. D 73: 103002 ADSGoogle Scholar
  47. 47.
    Dahlén T., et al. (2004). ApJ 613: 189 ADSGoogle Scholar
  48. 48.
    Davis T.M., Schmidt B.P. and Kim A.G. (2006). PASP 118: 205 ADSGoogle Scholar
  49. 49.
    Davis T.M., et al. (2007). ApJ 666: 716 ADSGoogle Scholar
  50. 50.
    Dessart L and Hillier D.J. (2005). A&A 439: 671 ADSGoogle Scholar
  51. 51.
    Dessart L. and Hillier D.J. (2006). A&A 447: 691 ADSGoogle Scholar
  52. 52.
    Drell P.S., Loredo T.J. and Wasserman I. (2000). ApJ 530: 593 ADSGoogle Scholar
  53. 53.
    Eastman R.G., Schmidt B.P. and Kirshner R.P. (1996). ApJ 466: 911 ADSGoogle Scholar
  54. 54.
    Eisenstein D.J., et al. (2005). ApJ 633: 560 ADSGoogle Scholar
  55. 55.
    Elias J., Matthews K., Neugebauer G. and Persson S.E. (1985). ApJ 296: 379 ADSGoogle Scholar
  56. 56.
    Elias-Rosa N., et al. (2006). MNRAS 369: 1880 ADSGoogle Scholar
  57. 57.
    Elmhamdi A., et al. (2003). MNRAS 338: 939 ADSGoogle Scholar
  58. 58.
    Farrah D., et al. (2002). MNRAS 336: L17 ADSGoogle Scholar
  59. 59.
    Fassia A., et al. (2000). MNRAS 318: 1093 ADSGoogle Scholar
  60. 60.
    Filippenko A.V. (1997). ARA&A 35: 309 ADSGoogle Scholar
  61. 61.
    Filippenko A.V. and Sargent WLW. (1986). Nature 316: 407 ADSGoogle Scholar
  62. 62.
    Filippenko A.V., et al. (1992a). ApJ 384: L15 ADSGoogle Scholar
  63. 63.
    Filippenko A.V., et al. (1992b). AJ 104: 1543 ADSGoogle Scholar
  64. 64.
    Filippenko A.V., Matheson T. and Barth A.J. (1994). AJ 108: 2220 ADSGoogle Scholar
  65. 65.
    Fisher A., et al. (1999). MNRAS 304: 67 ADSGoogle Scholar
  66. 66.
    Foley R.J., et al. (2005). ApJ 6226: L11 ADSGoogle Scholar
  67. 67.
    Förster F., et al. (2006). MNRAS 368: 1893 ADSGoogle Scholar
  68. 68.
    Fransson, C., Houck, J., Kozma, C.: In: McCray, R., Wang, Z. (eds.) Supernovae and Supernova Remnants, IAU Coll. 145, p. 211. Cambridge University Press, Cambridge (1996)Google Scholar
  69. 69.
    Fransson C., et al. (2002). ApJ 572: 350 ADSGoogle Scholar
  70. 70.
    Fransson C., et al. (2007). ESO Messenger 127: 44 ADSGoogle Scholar
  71. 71.
    Freedman W.L., et al. (2001). ApJ 553: 47 ADSGoogle Scholar
  72. 72.
    Galama T.J., et al. (1998). Nature 395: 670 ADSGoogle Scholar
  73. 73.
    Gamezo V.N., et al. (2003). Science 299: 77 ADSGoogle Scholar
  74. 74.
    Gamezo V.N., Khokhlov A.M. and Oran E.S. (2004). Phys. Rev. Lett. 92: 211102 ADSGoogle Scholar
  75. 75.
    Gamezo V.N., Khokhlov A.M. and Oran E.S. (2005). ApJ 623: 337 ADSGoogle Scholar
  76. 76.
    Garavini G., et al. (2004). AJ 128: 387 ADSGoogle Scholar
  77. 77.
    Garavini G., et al. (2005). AJ 130: 2278 ADSGoogle Scholar
  78. 78.
    Garavini G., et al. (2007). A&A 471: 527 ADSGoogle Scholar
  79. 79.
    Garavini G., et al. (2007). A&A 470: 411 ADSGoogle Scholar
  80. 80.
    García-Berro E., Isern J. and Kubyshin Y.A. (2007). A&AR 14: 113 ADSGoogle Scholar
  81. 81.
    Garnavich P.M., et al. (1998a). ApJ 493: L53 ADSGoogle Scholar
  82. 82.
    Garnavich P.M., et al. (1998b). ApJ 509: 74 ADSGoogle Scholar
  83. 83.
    Gaztañaga E., et al. (2002). Phys. Rev. D 65: 023506 ADSGoogle Scholar
  84. 84.
    Gerardy C.L., et al. (2007). ApJ 661: 995 ADSGoogle Scholar
  85. 85.
    Goldhaber, G., et al.: In: Ruiz-Lapuente, P., Canal, R., Isern, J. (eds.) Thermonuclear Supernovae, p. 777. Kluwer, Dordrecht (1997)Google Scholar
  86. 86.
    Goldhaber G., et al. (2001). ApJ 558: 359 ADSGoogle Scholar
  87. 87.
    Gunnarsson C., et al. (2006). ApJ 640: 417 ADSGoogle Scholar
  88. 88.
    Guy J., et al. (2005). A&A 443: 781 ADSGoogle Scholar
  89. 89.
    Guy J., et al. (2007). A&A 466: 11 ADSGoogle Scholar
  90. 90.
    Hamuy, M.: PhD Thesis, University of Arizona, Tucson (2001)Google Scholar
  91. 91.
    Hamuy M. (2003). ApJ 582: 905 ADSGoogle Scholar
  92. 92.
    Hamuy M. and Pinto P.A. (2002). ApJ 566: L63 ADSGoogle Scholar
  93. 93.
    Hamuy M., et al. (1993). PASP 105: 787 ADSGoogle Scholar
  94. 94.
    Hamuy M., et al. (1995). AJ 109: 1 ADSGoogle Scholar
  95. 95.
    Hamuy M., et al. (2001). ApJ 558: 615 ADSGoogle Scholar
  96. 96.
    Hamuy M., et al. (2002). AJ 124: 417 ADSGoogle Scholar
  97. 97.
    Hamuy M., et al. (2003). Nature 424: 651 ADSGoogle Scholar
  98. 98.
    Hamuy M., et al. (2006). PASP 118: 2 ADSGoogle Scholar
  99. 99.
    Hansen L., et al. (1989). A&A 211: L9 ADSGoogle Scholar
  100. 100.
    Hatano K., et al. (2000). ApJ 543: L49 ADSGoogle Scholar
  101. 101.
    Haugbølle T., et al. (2007). ApJ 661: 650 ADSGoogle Scholar
  102. 102.
    Heger A., et al. (2003). ApJ 591: 288 ADSGoogle Scholar
  103. 103.
    Hillebrandt W. and Niemeyer J.C. (2000). ARA&A 38: 191 ADSGoogle Scholar
  104. 104.
    Hillebrandt W. and Leibundgut B. (2003). From Twilight to Highlight: The Physics of Supernovae. Springer, Heidelberg Google Scholar
  105. 105.
    Hjorth J., et al. (2003). Nature 423: 847 ADSGoogle Scholar
  106. 106.
    Höflich P., Müller E. and Khokhlov A. (1993). A&A 268: 570 ADSGoogle Scholar
  107. 107.
    Höflich P., Kumar P., Wheeler J.C. and Mattila S. (2004). Cosmic Explosions in three Dimensions: Asymmetries in Supernovae and Gamma-Ray Bursts. Cambridge University Press, Cambridge Google Scholar
  108. 108.
    Holz D.E. and Wald R.M. (1998). Phys. Rev. D 58: 063501 ADSMathSciNetGoogle Scholar
  109. 109.
    Homeier N.L. (2005). ApJ 620: 12 ADSGoogle Scholar
  110. 110.
    Hook I., et al. (2005). AJ 130: 2788 ADSGoogle Scholar
  111. 111.
    Howell D.A., et al. (2005). ApJ 634: 1190 ADSGoogle Scholar
  112. 112.
    Howell D.A., et al. (2006). Nature 443: 308 ADSGoogle Scholar
  113. 113.
    Hsiao E.Y., et al. (2007). ApJ 663: 1187 ADSGoogle Scholar
  114. 114.
    Hubble E. (1936). The Realm of the Nebulae. Yale University Press, New Haven Google Scholar
  115. 115.
    Hui L. and Greene P.B. (2006). Phys. Rev. D 73: 123526 ADSGoogle Scholar
  116. 116.
    Immler S., et al. (2006). ApJ 648: L119 ADSGoogle Scholar
  117. 117.
    Jha S., et al. (1999). ApJS 125: 73 ADSGoogle Scholar
  118. 118.
    Jha S., et al. (2006a). AJ 131: 527 ADSGoogle Scholar
  119. 119.
    Jha S., et al. (2006b). AJ 132: 189 ADSGoogle Scholar
  120. 120.
    Jha S., Riess A.G. and Kirshner R.P. (2007). ApJ 659: 122 ADSGoogle Scholar
  121. 121.
    Jönsson J., et al. (2006). ApJ 639: 991 ADSGoogle Scholar
  122. 122.
    Jönsson J., et al. (2007). JCAP 6: 2 ADSGoogle Scholar
  123. 123.
    Kasen D., et al. (2003). ApJ 593: 788 ADSGoogle Scholar
  124. 124.
    Kasen D. (2006a). ApJ 649: 939 ADSGoogle Scholar
  125. 125.
    Kasen D., et al. (2006b). ApJ 651: 366 ADSGoogle Scholar
  126. 126.
    Kasen D. and Woosley S.E. (2007). ApJ 656: 661 ADSGoogle Scholar
  127. 127.
    Khokhlov A.M. (1991). A&A 245: 114 ADSGoogle Scholar
  128. 128.
    Kim A., Goobar A. and Perlmutter S. (1996). PASP 108: 190 ADSGoogle Scholar
  129. 129.
    Kirshner R.P. and Kwan J. (1974). ApJ 193: 967 Google Scholar
  130. 130.
    Kitaura F.S., Janka H.T. and Hillebrandt W. (2006). A&A 450: 345 ADSGoogle Scholar
  131. 131.
    Knop R., et al. (2003). ApJ 598: 102 ADSGoogle Scholar
  132. 132.
    Kotak R., et al. (2004). MNRAS 354: L13 ADSGoogle Scholar
  133. 133.
    Kotak R., et al. (2005). A&A 436: 1021 ADSGoogle Scholar
  134. 134.
    Kowal C.T. (1968). AJ 73: 1021 ADSGoogle Scholar
  135. 135.
    Krisciunas K., Phillips M.M. and Suntzeff N.B. (2004). ApJ 602: L81 ADSGoogle Scholar
  136. 136.
    Krisciunas K., et al. (2000). ApJ 539: 658 ADSGoogle Scholar
  137. 137.
    Krisciunas K., et al. (2001). AJ 122: 1616 ADSGoogle Scholar
  138. 138.
    Krisciunas K., et al. (2003). AJ 125: 166 ADSGoogle Scholar
  139. 139.
    Krisciunas K., et al. (2004a). AJ 127: 1664 ADSGoogle Scholar
  140. 140.
    Krisciunas K., et al. (2004b). AJ 128: 3034 ADSGoogle Scholar
  141. 141.
    Krisciunas K., et al. (2005). AJ 130: 2453 ADSGoogle Scholar
  142. 142.
    Krisciunas K., et al. (2006). AJ 131: 1639 ADSGoogle Scholar
  143. 143.
    Krisciunas K., et al. (2007). AJ 133: 58 ADSGoogle Scholar
  144. 144.
    Kuchner M.J., et al. (1994). ApJ 426: L89 ADSGoogle Scholar
  145. 145.
    Kuznetsova N.V. and Connolly B.M. (1007). ApJ 659: 530 ADSGoogle Scholar
  146. 146.
    Leibundgut, B.: In: Clegg, R., Stevens, I., Meikle, P. (eds.) Circumstellar Media in Late Stages of Stellar Evolution, p. 100. Cambridge University Press, CambridgeGoogle Scholar
  147. 147.
    Leibundgut B. (2000). A&AR 10: 179 ADSGoogle Scholar
  148. 148.
    Leibundgut B. (2001). ARA&A 39: 67 ADSGoogle Scholar
  149. 149.
    Leibundgut, B.: In: Barbosa, D., Mourao, A. (eds.) Hunting the Cosmological Parameters with Precision Cosmology. Kluwer, Dordrecht, Ap&SS 290:29(2004)Google Scholar
  150. 150.
    Leibundgut, B.: In: Blanchard, A., Signore, M. (eds.) Frontiers of Cosmology, p. 195. Springer, Dordrecht (2005)Google Scholar
  151. 151.
    Leibundgut B. and Pinto P.A. (1992). ApJ 401: 49 ADSGoogle Scholar
  152. 152.
    Leibundgut, B., Suntzeff, N.B.: In: Weiler, K. (ed.) Supernovae and Gamma-ray Bursts. Springer, Heidelberg, p. 77 (2003)Google Scholar
  153. 153.
    Leibundgut B., et al. (1991). ApJ 372: 531 ADSGoogle Scholar
  154. 154.
    Leibundgut B., et al. (1996). ApJ 466: L21 ADSGoogle Scholar
  155. 155.
    Leonard D.C., et al. (2001). PASP 114: 35 ADSGoogle Scholar
  156. 156.
    Leonard D.C., et al. (2003). ApJ 594: 247 ADSGoogle Scholar
  157. 157.
    Leonard D.C., et al. (2005). ApJ 632: 450 ADSGoogle Scholar
  158. 158.
    Li W., et al.l (2001). PASP 113: 1178 ADSGoogle Scholar
  159. 159.
    Li W., et al. (2003). PASP 115: 453 ADSGoogle Scholar
  160. 160.
    Lidman C., et al. (2005). A&A 430: 843 ADSGoogle Scholar
  161. 161.
    Lorén-Aguilar P., et al. (2003). Class. Quant. Grav. 20: 3885 zbMATHADSGoogle Scholar
  162. 162.
    Lundmark K.E. (1925). MNRAS 85: 865 ADSGoogle Scholar
  163. 163.
    Lundmark, K.E.: Lund Observatory Circ. 8 (1932)Google Scholar
  164. 164.
    Marcaide, J.M., Weiler, K.: Cosmic Explosions: on the 10th Anniversary of SN 1993J, p. 192. IAU Coll. Springer, Heidelberg (2005)Google Scholar
  165. 165.
    Matheson T., et al. (2003). ApJ 599: 394 ADSGoogle Scholar
  166. 166.
    Matheson T., et al. (2005). AJ 129: 2352 ADSGoogle Scholar
  167. 167.
    Mayall N.U. and Oort J.H. (1942). PASP 54: 95 ADSGoogle Scholar
  168. 168.
    Mazzali P., et al. (2002). ApJ 572: L61 ADSGoogle Scholar
  169. 169.
    Mazzali P., et al. (2003). ApJ 599: L95 ADSGoogle Scholar
  170. 170.
    Mazzali P., et al. (2005). ApJ 623: L37 ADSGoogle Scholar
  171. 171.
    McCray R. (1993). ARA&A 31: 175 ADSGoogle Scholar
  172. 172.
    McCray, R.: In: Marcaide, J.M., Weiler, K. (eds.) Cosmic Explosions, p. 77. Springer, Heidelberg (2005)Google Scholar
  173. 173.
    Meikle WPS. (2000). MNRAS 314: 782 ADSGoogle Scholar
  174. 174.
    Melbourne J., et al. (2007). AJ 133: 2709 ADSGoogle Scholar
  175. 175.
    Miknaitis G., et al. (2007). ApJ 666: 674 ADSGoogle Scholar
  176. 176.
    Minkowski R. (1941). PASP 53: 224 ADSGoogle Scholar
  177. 177.
    Minkowski R. (1964). ARA&A 2: 247 ADSGoogle Scholar
  178. 178.
    Murdin P. and Murdin L. (1978). Supernovae. Cambridge University Press, Cambridge Google Scholar
  179. 179.
    Neill J.D., et al. (2006). AJ 132: 1126 ADSGoogle Scholar
  180. 180.
    Niemeyer J.C. and Truran J.W. (2000). Type Ia Supernovae, Theory and Cosmology. Cambridge University Press, Cambridge Google Scholar
  181. 181.
    Nobili S., et al. (2005). A&A 437: 789 ADSGoogle Scholar
  182. 182.
    Nørgaard-Nielsen H.-U., et al. (1989). Nature 339: 523 ADSGoogle Scholar
  183. 183.
    Nugent P., Kim A. and Perlmutter S. (2002). PASP 114: 803 ADSGoogle Scholar
  184. 184.
    Nugent P., et al. (1995). ApJ 455: L147 ADSGoogle Scholar
  185. 185.
    Nugent P., et al. (2006). ApJ 645: 841 ADSGoogle Scholar
  186. 186.
    Ofek E.O., et al. (2007). ApJ 659: L13 ADSGoogle Scholar
  187. 187.
    Panagia N., Sramek R.A. and Weiler K.W. (1986). ApJ 300: L55 ADSGoogle Scholar
  188. 188.
    Panagia N., et al. (2006). ApJ 646: 369 ADSGoogle Scholar
  189. 189.
    Pastorello A., et al. (2007a). MNRAS 376: 1201 Google Scholar
  190. 190.
    Pastorello A., et al. (2007b). MNRAS 377: 1531 ADSGoogle Scholar
  191. 191.
    Patat F., et al. (2001). ApJ 555: 900 ADSGoogle Scholar
  192. 192.
    Peacock J.A. (1999). Cosmological Physics. Cambridge University Press, Cambridge zbMATHGoogle Scholar
  193. 193.
    Peacock, J., et al.: Report by the ESA-ESO Working Group on Fundamental Cosmology. Garching: ESA (also available as astro-ph/0610906) (2006)Google Scholar
  194. 194.
    Peebles P.J.E. (1993). Principles of Physical Cosmology. Princeton University Press, Princeton Google Scholar
  195. 195.
    Perlmutter, S., Schmidt, B.P.: In: Weiler, K. (ed.) Supernovae and Gamma-Ray Bursts, p. 195. Springer, HeidelbergGoogle Scholar
  196. 196.
    Perlmutter, S., et al.: In: Woosley, S.E. (ed.) Supernovae, p. 727. Springer, New York (1991)Google Scholar
  197. 197.
    Perlmutter S., et al. (1995). ApJ 440: L41 ADSGoogle Scholar
  198. 198.
    Perlmutter S., et al. (1997). ApJ 483: 565 ADSGoogle Scholar
  199. 199.
    Perlmutter, S., et al.: Nature 391, 51 (see also Nature 392:311) (1998)Google Scholar
  200. 200.
    Perlmutter S., et al. (1999). ApJ 517: 565 ADSGoogle Scholar
  201. 201.
    Phillips M.M. (1993). ApJ 413: L105 ADSGoogle Scholar
  202. 202.
    Phillips M.M., et al. (1999). AJ 118: 1766 ADSGoogle Scholar
  203. 203.
    Phillips M.M., et al. (2006). AJ 131: 2615 ADSGoogle Scholar
  204. 204.
    Phillips M.M., et al. (2007). PASP 119: 360 ADSGoogle Scholar
  205. 205.
    Pignata G., et al. (2004). MNRAS 355: 178 ADSGoogle Scholar
  206. 206.
    Pinto P.A. and Eastman R.G. (2000). ApJ 530: 757 ADSGoogle Scholar
  207. 207.
    Prieto J.L., Rest A. and Suntzeff N.B. (2006). ApJ 647: 501 ADSGoogle Scholar
  208. 208.
    Reineke M., Hillebrandt W. and Niemeyer J.C. (2002). A&A 391: 1167 ADSGoogle Scholar
  209. 209.
    Riess A.G. (2000). PASP 112: 1284 ADSGoogle Scholar
  210. 210.
    Riess A.G., Press W.M. and Kirshner R.P. (1995). ApJ 445: L91 ADSGoogle Scholar
  211. 211.
    Riess A.G., Press W.M. and Kirshner R.P. (1996a). ApJ 473: 88 ADSGoogle Scholar
  212. 212.
    Riess A.G., Press W.M. and Kirshner R.P. (1996b). ApJ 473: 588 ADSGoogle Scholar
  213. 213.
    Riess A.G., et al. (1997). AJ 114: 722 ADSGoogle Scholar
  214. 214.
    Riess A.G., et al. (1998). AJ 116: 1009 ADSGoogle Scholar
  215. 215.
    Riess A.G., et al. (1999a). AJ 117: 707 ADSGoogle Scholar
  216. 216.
    Riess A.G., et al. (1999b). AJ 118: 2675 ADSGoogle Scholar
  217. 217.
    Riess A.G., et al. (2000). ApJ 536: 62 ADSGoogle Scholar
  218. 218.
    Riess A.G., et al. (2004a). ApJ 600: L163 ADSGoogle Scholar
  219. 219.
    Riess A.G., et al. (2004b). ApJ 607: 665 ADSGoogle Scholar
  220. 220.
    Riess A.G., et al. (2007). ApJ 659: 98 ADSGoogle Scholar
  221. 221.
    Röpke F. and Hillebrandt W. (2004). A&A 430: L1 Google Scholar
  222. 222.
    Röpke F. and Hillebrandt W. (2005). A&A 431: 635 ADSGoogle Scholar
  223. 223.
    Röpke F. and Niemeyer J.C. (2007). A&A 464: 683 ADSGoogle Scholar
  224. 224.
    Röpke F., et al. (2006). A&A 453: 203 ADSGoogle Scholar
  225. 225.
    Röpke F., Woosley S.E. and Hillebrandt W. (2007). ApJ 660: 1344 ADSGoogle Scholar
  226. 226.
    Saha A., et al. (1999). ApJ 522: 802 ADSGoogle Scholar
  227. 227.
    Sainton, G.: PhD Thesis, Université Lyon IGoogle Scholar
  228. 228.
    Sandage A. (1961). ApJ 133: 355 ADSGoogle Scholar
  229. 229.
    Sandage A. (1988). ARA&A 26: 561 ADSGoogle Scholar
  230. 230.
    Sandage A., et al. (2006). ApJ 653: 843 ADSGoogle Scholar
  231. 231.
    Schmidt B.P., et al. (1994). ApJ 432: 42 ADSGoogle Scholar
  232. 232.
    Schmidt B.P., et al. (1998). ApJ 507: 46 ADSGoogle Scholar
  233. 233.
    Sim S. (2007). MNRAS 375: 154 ADSGoogle Scholar
  234. 234.
    Sim S., et al. (2007). MNRAS 378: 2 ADSGoogle Scholar
  235. 235.
    Smith N., et al. (2007). ApJ 666: 1116 ADSGoogle Scholar
  236. 236.
    Sollerman J., et al. (2002). A&A 386: 944 ADSGoogle Scholar
  237. 237.
    Sollerman J., et al. (2004). A&A 429: 559 ADSGoogle Scholar
  238. 238.
    Spyromilio J., et al. (2004). A&A 426: 547 ADSGoogle Scholar
  239. 239.
    Stanek K.Z., et al. (2003). ApJ 591: L13 ADSGoogle Scholar
  240. 240.
    Stanishev V., et al. (2007). A&A 469: 645 ADSGoogle Scholar
  241. 241.
    Stehle M., et al. (2005). MNRAS 360: 1231 ADSGoogle Scholar
  242. 242.
    Stritzinger M. (2005). Leibundgut: A&A 431: 423 ADSGoogle Scholar
  243. 243.
    Stritzinger M. and Sollerman J. (2007). A&A 470: L1 ADSGoogle Scholar
  244. 244.
    Stritzinger M., et al. (2002). AJ 124: 2100 ADSGoogle Scholar
  245. 245.
    Stritzinger M., et al. (2006). A&A 450: 241 ADSGoogle Scholar
  246. 246.
    Strolger L., et al. (2004). AJ 613: 200 Google Scholar
  247. 247.
    Stubbs C.W. and Tonry J.L. (2006). ApJ 646: 1436 ADSGoogle Scholar
  248. 248.
    Sullivan M., et al. (2003). MNRAS 340: 1057 ADSGoogle Scholar
  249. 249.
    Sullivan M., et al. (2006a). AJ 131: 960 ADSGoogle Scholar
  250. 250.
    Sullivan M., et al. (2006b). ApJ 648: 868 ADSGoogle Scholar
  251. 251.
    Tammann, A.G.: In: Macchetto, F., Pacini, F., Tarenghi, M. (eds.) Astronomical Uses of the Space Telescope, p. 329. ESO, Garching (1978)Google Scholar
  252. 252.
    Tammann A.G. and Leibundgut B. (1990). A&A 236: 9 ADSGoogle Scholar
  253. 253.
    Taubenberger S., et al. (2006). MNRAS 371: 1459 ADSGoogle Scholar
  254. 254.
    Thomas R.D., et al. (2007). ApJ, 654: L53 ADSGoogle Scholar
  255. 255.
    Tonry J.L., et al. (2003). ApJ 594: 1 ADSGoogle Scholar
  256. 256.
    Turatto M., et al. (1993). MNRAS 262: 128 ADSGoogle Scholar
  257. 257.
    Turatto, M.: In: Weiler, K. (eds.) Supernovae and Gamma-ray Bursts, p. 21. Springer, Heidelberg (2003)Google Scholar
  258. 258.
    Turatto M., Benetti S., Zampieri L., Shea W. (2005) Supernovae as Cosmological Lighthouses. Astronomical Society of the Pacific, San Francisco, pp. 1604–2004Google Scholar
  259. 259.
    Uomoto A. and Kirshner R.P. (1985). A&A 149: L7 ADSGoogle Scholar
  260. 260.
    Vacca W.D. and Leibundgut B. (1996). ApJ 471: L37 ADSGoogle Scholar
  261. 261.
    Wambsganss J., et al. (1997). ApJ 475: L81 ADSGoogle Scholar
  262. 262.
    Wang L., et al. (2003a). ApJ 590: 944 ADSGoogle Scholar
  263. 263.
    Wang L., et al. (2003b). ApJ 591: 1110 ADSGoogle Scholar
  264. 264.
    Wang L., et al. (2006). ApJ 641: 50 ADSGoogle Scholar
  265. 265.
    Wang L., Baade D. and Patat F. (2007). Science 315: 212 ADSGoogle Scholar
  266. 266.
    Weiler K.W. (2003). Supernovae and Gamma-ray Bursts. Springer, Heidelberg Google Scholar
  267. 267.
    Weiler K.W. and Sramek R.A. (1988). ARA&A 26: 295 ADSGoogle Scholar
  268. 268.
    Weiler K.W., et al. (2002). ARA&A 40: 387 ADSGoogle Scholar
  269. 269.
    Weinberg S. (1972). Gravitation and cosmology: principles and applications of the general theory of relativity. Wiley, New York Google Scholar
  270. 270.
    Wheeler J.C. and Levreault R. (1985). ApJ 294: L17 ADSGoogle Scholar
  271. 271.
    Williams B.F., et al. (2003). AJ 126: 2608 ADSGoogle Scholar
  272. 272.
    Wilson O.C. (1939). ApJ 90: 634 ADSGoogle Scholar
  273. 273.
    Woosley S.E. and Bloom J.S. (2007). ARA&A 44: 507 ADSGoogle Scholar
  274. 274.
    Wood-Vasey W.M., et al. (2007). ApJ 666: 694 ADSGoogle Scholar
  275. 275.
    Zehavi I., et al. (1998). ApJ 503: 483 ADSGoogle Scholar
  276. 276.
    Zwicky, F.: In: Aller, L.H., McLaughlin, D.B. (eds.) Stellar Structure, p. 367. University of Chicago Press, Chicago (1965)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.European Southern ObservatoryGarchingGermany

Personalised recommendations