General Relativity and Gravitation

, Volume 39, Issue 11, pp 1735–1748 | Cite as

On the history of the so-called Lense-Thirring effect

Research Article

Abstract

Some historical documents, especially the Einstein–Besso manuscript from 1913, an extensive notebook by H. Thirring from 1917, and the correspondence between Thirring and Einstein in the year 1917 reveal that most of the merit for the so-called Lense-Thirring effect of general relativity belongs to Einstein. Besides telling this “central story” of the effect, we give a short “prehistory”, with contributions by E. Mach, B. and I. Friedlaender, and A. Föppl, followed by the later history of the problem of a correct centrifugal force inside a rotating mass shell, which was resolved only relatively recently.

Keywords

Lense-Thirring effect Dragging Coriolis force Centrifugal force Mach’s principle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thirring, H.: Phys. Zs. 19, 33 [English translation in Gen. Rel. Grav. 16 (1984), 712] (1918)Google Scholar
  2. 2.
    Lanczos K. (1923). Zeits. Phys. 14: 204 CrossRefGoogle Scholar
  3. 3.
    Bass L. and Pirani F.A.E. (1955). Phil. Mag. 46: 850 MATHMathSciNetGoogle Scholar
  4. 4.
    Pfister H. and Braun K.H. (1985). Class. Quant. Grav. 2: 909 CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Ciufolini I. and Pavlis E.C. (2004). Nature 431: 958 CrossRefADSGoogle Scholar
  6. 6.
    Pugh G.E. (1959). WSEG Research Memorandum 11. The Pentagon, Washington Google Scholar
  7. 7.
    Schiff L.I. (1960). Phys. Rev. Lett. 4: 215 CrossRefADSGoogle Scholar
  8. 8.
    Schiff L.I. (1960). Proc. Nat. Acad. Sci. USA 46: 871 MATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Ciufolini I. and Wheeler J.A. (1995). Gravitation and Inertia. Princeton University Press, New Jersey MATHGoogle Scholar
  10. 10.
    Everitt, C.W.F., et al.: Gyros, clocks, interferometers, ...: testing relativistic gravity in space. Springer Lecture Notes 562, pp. 52–82 (2001)Google Scholar
  11. 11.
    Barbour, J., Pfister, H. (eds.): Mach’s Principle: From Newton’s Bucket to Quantum Gravity. Birkhäuser, Leipzig (1995)Google Scholar
  12. 12.
    Mach, E.: Die Geschichte und die Wurzel des Satzes von der Erhaltung der Arbeit. Calve, Prag (1872)Google Scholar
  13. 13.
    Mach, E.: Die Mechanik in ihrer Entwicklung. Historisch-kritisch dargestellt. Brockhaus, Leipzig (1883)Google Scholar
  14. 14.
    Friedlaender, B., Friedlaender, I.: Absolute oder relative Bewegung. Simion, Berlin. (Partial translation, and comments in [11]) (1896)Google Scholar
  15. 15.
    Föppl, A.: Sitzb. Bayer. Akad. Wiss. 34:5 (Summary in [11])Google Scholar
  16. 16.
    Einstein, A.: Jahrb. Radioakt. Elektronik 4:411 (1907) (Chap. V, pp. 454–462)Google Scholar
  17. 17.
    Einstein, A.: Ann. Phys. 38:355, 443 (1912)Google Scholar
  18. 18.
    Einstein A. (1912). Vierteljahrschr. gerichtl. Med. öffentl. Sanitätswesen 44: 37 ADSGoogle Scholar
  19. 19.
    Brans C.H. (1962). Phys. Rev. 125: 388 CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Howard, D., Stachel, J. (eds.): Einstein and the History of General Relativity. Birkhäuser, Leipzig (1989)Google Scholar
  21. 21.
    Norton J. (1984). Hist. Stud. Phys. Sci. 14: 253 Google Scholar
  22. 22.
    Einstein, A., Grossmann, M.: Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation. Teubner, Leipzig (1913)Google Scholar
  23. 23.
    Klein, M.J., et al. (eds.): The Collected Papers of Albert Einstein, vol. 4. Princeton University Press, New Jersey (1995)Google Scholar
  24. 24.
    Droste J. (1914). Kon. Akad. Wetenschapen Amsterdam Proc. Sec. Sci. 17: 998 Google Scholar
  25. 25.
    Einstein A. (1913). Phys. Zs. 14: 1249 Google Scholar
  26. 26.
    Lense, J., Thirring, H.: Phys. Zs. 19:156 (1918). (Translation in Gen. Rel. Grav. 16:727 (1984))Google Scholar
  27. 27.
    Thirring H. (1918). Phys. Zs. 19: 204 Google Scholar
  28. 28.
    Schulmann, R., et al. (eds.): The Collected Papers of Albert Einstein, vol. 8 (Documents 361, 369, 401, and 405). Princeton University Press, New Jersey (1998)Google Scholar
  29. 29.
    Thirring H. (1966). Almanach Österr. Akad. Wiss. 166: 361 Google Scholar
  30. 30.
    Thirring, H.: Wirkung rotierender Massen. (Österr. Zentralbibl. Wien) (1917)Google Scholar
  31. 31.
    Einstein, A.: Sitzb. Königl. Preuss. Akad. Wiss. 142 (1917)Google Scholar
  32. 32.
    Thirring H. (1918). Vierteljahrb. Wiener Verein z. Förderung d. phys. und chem. Unterrichts 23: 17 Google Scholar
  33. 33.
    Thirring, H.: Über die Relativität der Rotationsbewegung in der Einsteinschen Gravitationstheorie. Österr. Zentralbibl. Phys., Wien (1922)Google Scholar
  34. 34.
    Lense J. (1918). Astron. Nachr. 206: 117 CrossRefADSGoogle Scholar
  35. 35.
    Jaffé G. (1922). Phys. Zs. 23: 337 Google Scholar
  36. 36.
    Zimmel, B., Kerber, G. (eds.): Hans Thirring. Ein Leben für Physik und Frieden. Böhlau, Wien (1992)Google Scholar
  37. 37.
    Hönl H. and Maue A.W. (1956). Zs. Phys. 144: 152 MATHCrossRefGoogle Scholar
  38. 38.
    Soergel-Fabricius, C.: Zs. Phys. 159:541, 161:392 (1960)Google Scholar
  39. 39.
    Brill D. and Cohen J.M. (1966). Phys. Rev. 143: 1011 CrossRefADSMathSciNetGoogle Scholar
  40. 40.
    Hawking, S., Ellis, G.F.R.: The large scale structure of space-time. Cambridge University Press, London (1973)Google Scholar
  41. 41.
    Pfister H. and Braun K.H. (1986). Class. Quant. Grav. 3: 335 MATHCrossRefADSMathSciNetGoogle Scholar
  42. 42.
    de la Cruz V. and Israel W. (1968). Phys. Rev. 170: 1187 CrossRefADSGoogle Scholar
  43. 43.
    Pfister H. (1989). Class. Quant. Grav. 6: 487 CrossRefADSMathSciNetGoogle Scholar
  44. 44.
    Klein C. (1993). Class. Quant. Grav. 10: 1619 CrossRefADSGoogle Scholar
  45. 45.
    Bičák J., Lynden-Bell D. and Katz J. (2004). Phys. Rev. D 69: 064011 CrossRefADSGoogle Scholar
  46. 46.
    Schmid C. (2006). Phys. Rev. D 74: 044031 CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikUniversität TübingenTübingenGermany

Personalised recommendations