Advertisement

General Relativity and Gravitation

, Volume 39, Issue 11, pp 1891–1927 | Cite as

Partial and complete observables for Hamiltonian constrained systems

  • B. Dittrich
Research Article

Abstract

We will pick up the concepts of partial and complete observables introduced by Rovelli in Conceptional Problems in Quantum Gravity, Birkhäuser, Boston (1991); Class Quant Grav, 8:1895 (1991); Phys Rev, D65:124013 (2002); Quantum Gravity, Cambridge University Press, Cambridge (2007) in order to construct Dirac observables in gauge systems. We will generalize these ideas to an arbitrary number of gauge degrees of freedom. Different methods to calculate such Dirac observables are developed. For background independent field theories we will show that partial and complete observables can be related to Kuchař’s Bubble-Time Formalism (J Math Phys, 13:768, 1972). Moreover one can define a non-trivial gauge action on the space of complete observables and also state the Poisson brackets of these functions. Additionally we will investigate, whether it is possible to calculate Dirac observables starting with partially invariant partial observables, for instance functions, which are invariant under the spatial diffeomorphism group.

Keywords

Phase Space Gauge Transformation Poisson Bracket Poisson Algebra Dirac Bracket 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold V.I. (ed.) (1988) Dynamical Systems III. Springer, Berlin Google Scholar
  2. 2.
    DeWitt, B.S.: The Quantization of geometry. In: Witten, L. (ed.) (1962) Gravitation: An Introduction to Current Research. Wiley, New York (1962)Google Scholar
  3. 3.
    DeWitt B.S. (1967). Phys. Rev. 160: 1113 zbMATHCrossRefADSGoogle Scholar
  4. 4.
    Dittrich, B.: Partial and complete observables for canonical general relativity. Class. Quant. Grav. 23, 6155 (2006). E-print: gr-qc/0507106Google Scholar
  5. 5.
    Dittrich, B., Tambornino, J.: A perturbative approach to Dirac observables and their space–time algebra. Class. Quant. Grav. 24, 757 (2007). E-print: gr-qc/0610060Google Scholar
  6. 6.
    Dittrich, B., Thiemann, T.: Testing the master constraint programme for loop quantum gravity II: Finite dimensional examples. Class. Quant. Grav. 23, 1067–1088 (2006). E-print:gr-qc/0411139Google Scholar
  7. 7.
    Goldberg J.N., Lewandowski J. and Stornaiolo C. (1992). Degeneracy in loop variables. Commun. Math. Phys. 148: 377 zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Henneaux M. and Teitelboim C. (1992). Quantization of Gauge Systems. Princeton University Press, Princeton zbMATHGoogle Scholar
  9. 9.
    Isham C.J. and Kuchař K.V. (1985). Representations of spacetime diffeomorphisms. II. Canonical geometrodynamics. Ann. Phys. 164: 316 CrossRefADSGoogle Scholar
  10. 10.
    Jacobson T. and Romano J.D. (1993). The Spin Holonomy Group in General Relativity. Commun. Math. Phys. 155: 261 zbMATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Kouletsis, I., Kucha  K.V.: Symplectomorphisms in history phase space: bosonic string model. E-print: gr-qc/0108022Google Scholar
  12. 12.
    Kuchař K.V. (1971). Canonical quantization of cylindrical gravitational waves. Phys. Rev. D4: 955 ADSGoogle Scholar
  13. 13.
    Kuchař K.V. (1972). A bubble-time canonical formalism for geometrodynamics. J. Math. Phys. 13: 768 CrossRefGoogle Scholar
  14. 14.
    Kuchař, K.V.: Time and interpretations of quantum gravity. In: Kunstatter, G., Vincent, D., Williams, J. (eds.) Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics. World Scientific, Singapore (1992)Google Scholar
  15. 15.
    Lusanna, L.: Towards a unified description of the four interactions in terms of Dirac–Bergmann observables. E-print: hep-th/9907081Google Scholar
  16. 16.
    Pons, J.M., Salisbury, D.C.: The issue of time in generally covariant theories and the Komar–Bergmann approach to observables in general relativity. Phys. Rev. D71, 124012 (2005). E-print: gr-qc/0503013Google Scholar
  17. 17.
    Reed M. and Simon B (1980). Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press, London zbMATHGoogle Scholar
  18. 18.
    Rovelli, C.: In: Ashtekar, A., Stachel, J. (eds.) Conceptional Problems in Quantum Gravity, p. 126. Birkhäuser, Boston (1991)Google Scholar
  19. 19.
    Rovelli C. (1991). What is observable in classical and quantum gravity?. Class. Quant. Grav. 8: 1895 CrossRefGoogle Scholar
  20. 20.
    Rovelli C. (2002). Partial observables. Phys. Rev. D65: 124013 ADSMathSciNetGoogle Scholar
  21. 21.
    Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2007, in press)Google Scholar
  22. 22.
    Savvidou, N.: General relativity histories theory I: The spacetime character of the canonical description. Class. Quant. Grav. 21, 615 (2004). E-print: gr-qc/0306034Google Scholar
  23. 23.
    Savvidou, N.: General relativity histories theory II: Invariance groups. Class. Quant. Grav. 21, 631 (2004). E-print: gr-qc/0306036Google Scholar
  24. 24.
    Shanmugadhasan S. (1973). Canonical formalism for degenerate Lagrangians. J. Math. Phys. 14: 677 zbMATHCrossRefGoogle Scholar
  25. 25.
    Smolin, L.: Time, measurement and information loss in quantum cosmology. In: Hu, B.L. et al. (eds.) College Park 1993, Directions in General Relativity, vol. 2, p. 237–292. Cambridge University Press, London, 1993, e-print: gr-qc/9301016 (2005)Google Scholar
  26. 26.
    Torre C.G. (1992). Is general relativity an ‘already parametrized’ theory?. Phys. Rev. D46: 3231 ADSGoogle Scholar
  27. 27.
    Torre, C.G.: Gravitational observables and local symmetries. Phys. Rev. D48, 2373 (1993). E-print: gr-qc/9306030Google Scholar
  28. 28.
    Torre C.G. (1991). A complete set of observables for cylindrically symmetric gravita tional fields. Class. Quant. Grav. 8: 1895 CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Thiemann, T.: The phoenix project: master constraint programme for loop quantum gravity. Class. Quant. Grav. 23, 2211–2248 (2006). E-print: gr-qc/0305080Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.MPI f. GravitationsphysikAlbert-Einstein-InstitutGolm near PotsdamGermany
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations