Advertisement

General Relativity and Gravitation

, Volume 39, Issue 10, pp 1563–1582 | Cite as

Light’s bending angle due to black holes: from the photon sphere to infinity

  • S. V. Iyer
  • A. O. Petters
Research Article

Abstract

The bending angle of light is a central quantity in the theory of gravitational lensing. We develop an analytical perturbation framework for calculating the bending angle of light rays lensed by a Schwarzschild black hole. Using a perturbation parameter given in terms of the gravitational radius of the black hole and the light ray’s impact parameter, we determine an invariant series for the strong-deflection bending angle that extends beyond the standard logarithmic deflection term used in the literature. In the process, we discovered an improvement to the standard logarithmic deflection term. Our perturbation framework is also used to derive as a consistency check, the recently found weak deflection bending angle series. We also reformulate the latter series in terms of a more natural invariant perturbation parameter, one that smoothly transitions between the weak and strong deflection series. We then compare our invariant strong deflection bending-angle series with the numerically integrated exact formal bending angle expression, and find less than 1% discrepancy for light rays as far out as twice the critical impact parameter. The paper concludes by showing that the strong and weak deflection bending angle series together provide an approximation that is within 1% of the exact bending angle value for light rays traversing anywhere between the photon sphere and infinity.

Keywords

Gravitational lensing Black holes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Petters A.O, Levine H. and Wambsganss J. (2001). Singularity Theory and Gravitational Lensing. Birkhauser, Boston MATHGoogle Scholar
  2. 2.
    Schneider P., Ehlers J. and Falco E.E. (1992). Gravitational Lenses. Springer, Berlin Google Scholar
  3. 3.
    Kochanek C.S., Schneider P. and Wambsganss J. (2005). Gravitational Lensing: Strong, weak, and micro. In: Meylan, G., Jetzer, P., and North, P. (eds) Lecture Notes of the 33rd Saas-Fee Advanced Course, pp. Springer, Berlin Google Scholar
  4. 4.
    Keeton C.R. and Petters A.O. (2005). Phys. Rev. D 72: 104006 CrossRefADSGoogle Scholar
  5. 5.
    Keeton C.R. and Petters A.O. (2006). Phys. Rev. D 73: 044024 CrossRefADSGoogle Scholar
  6. 6.
    Keeton C.R. and Petters A.O. (2006). Phys. Rev. D 73: 104032 CrossRefADSGoogle Scholar
  7. 7.
    Gérard, J.-M., Pireaux, S.: gr-qc/9907034 (1999)Google Scholar
  8. 8.
    Bodener J. and Will C. (2003). Am. J. Phys. 71: 770 CrossRefADSGoogle Scholar
  9. 9.
    Sereno, M., De Luca, F.: astro-ph/0609435 (2006)Google Scholar
  10. 10.
    Virbhadra K.S. and Ellis G.F.R. (2000). Phys. Rev. D 62: 084003 CrossRefADSGoogle Scholar
  11. 11.
    Frittelli S., Kling T.P. and Newman E.T. (2000). Phys. Rev. D 61: 064021 CrossRefADSGoogle Scholar
  12. 12.
    Eiroa E.F., Romera G.E. and Torres D.F. (2002). Phys. Rev. D 66: 024010 CrossRefADSGoogle Scholar
  13. 13.
    Petters A.O. (2003). Mon. Not. R. Astron. Soc. 338: 457 CrossRefADSGoogle Scholar
  14. 14.
    Perlick V. (2004). Phys. Rev. D 69: 064017 CrossRefADSGoogle Scholar
  15. 15.
    Bozza V., Capozziello S., Iovane G. and Scarpetta G. (2001). Gen. Relativ. Gravit. 33: 1535 MATHCrossRefADSGoogle Scholar
  16. 16.
    Bozza V. (2002). Phys. Rev. D. 66: 103001 CrossRefADSGoogle Scholar
  17. 17.
    Bozza V. (2003). Phys. Rev. D. 67: 103006 CrossRefADSGoogle Scholar
  18. 18.
    Bozza V. and Mancini L. (2004). Gen. Relativ. Gravit. 36: 435 MATHCrossRefADSGoogle Scholar
  19. 19.
    Bozza, V., De Luca, F., Scarpetta, G., Serenom, M.: gr-qc/0507137 (2005)Google Scholar
  20. 20.
    Bozza V. and Mancini L. (2005). Astrophys. J. 627: 790 CrossRefADSGoogle Scholar
  21. 21.
    Amore, P., Cervantes, M., De Pace, A., Fernandez, F.M.: gr-qc/0610153v3 (2007)Google Scholar
  22. 22.
    Darwin, C.: Proc. R. Soc. London A249, 180 (1959); A263, 39 (1961).Google Scholar
  23. 23.
    Atkinson R.D. (1965). Astron. J. 70: 517 CrossRefADSGoogle Scholar
  24. 24.
    Luminet J.-P. (1979). Astron. Astrophys. 75: 228 ADSGoogle Scholar
  25. 25.
    Chandrasekhar, S.: The Mathematical Theory of Black Holes, Oxford (1992)Google Scholar
  26. 26.
    Ohanian H. (1987). Am. J. Phys. 55: 428 CrossRefADSGoogle Scholar
  27. 27.
    Byrd P.F. and Friedman M.D. (1971). Handbook of Elliptic Integrals for Engineers and Scientists. Springer, Heidelberg MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Physics and AstronomySUNY GeneseoGeneseoUSA
  2. 2.Departments of Mathematics and PhysicsDuke UniversityDurhamUSA

Personalised recommendations