Heavy ion collisions and black hole dynamics
- First Online:
- 14 Citations
- 181 Downloads
Abstract
Relativistic heavy ion collisions create a strongly coupled quark-gluon plasma. Some of the plasma’s properties can be approximately understood in terms of a dual black hole. These properties include shear viscosity, thermalization time, and drag force on heavy quarks. They are hard to calculate from first principles in QCD. Extracting predictions about quark-gluon plasmas from dual black holes mostly involves solving Einstein’s equations and classical string equations of motion. AdS/CFT provides a translation from gravitational calculations to gauge theory predictions. The gauge theory to which the predictions apply is \(\mathcal {N}\) = 4 super-Yang-Mills theory. QCD is different in many respects from super-Yang-Mills, but it seems that its high temperature properties are similar enough to make some meaningful comparisons.
References
- 1.BRAHMS Collaboration, Arsene, I., et al.: Quark gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment. Nucl. Phys. A757, 1–27 (2005). nucl-ex/0410020Google Scholar
- 2.PHENIX Collaboration, Adcox, K., et al.: Formation of dense partonic matter in relativistic nucleus nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration. Nucl. Phys. A757, 184–283 (2005). nucl-ex/0410003Google Scholar
- 3.Back B.B. (2005). The PHOBOS perspective on discoveries at RHIC. Nucl. Phys. A757: 28–101, nucl-ex/0410022 ADSGoogle Scholar
- 4.STAR Collaboration, Adams, J., et al.: Experimental and theoretical challenges in the search for the quark gluon plasma: the STAR collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A757 102–183 (2005). nucl-ex/0501009Google Scholar
- 5.Karsch, F., Laermann, E.: Thermodynamics and in-medium hadron properties from lattice QCD. hep-lat/0305025Google Scholar
- 6.Shuryak E.V. (1980). Quantum chromodynamics and the theory of superdense matter. Phys. Rept. 61: 71–158 CrossRefADSGoogle Scholar
- 7.Iancu, E., Leonidov, A., McLerran, L.: The colour glass condensate: an introduction. hep-ph/0202270Google Scholar
- 8.Kovner, A., Wiedemann, U.A.: Gluon radiation and parton energy loss. hep-ph/0304151Google Scholar
- 9.Kolb, P.F., Heinz, U.W.: Hydrodynamic description of ultrarelativistic heavy-ion collisions. nucl-th/0305084Google Scholar
- 10.Shuryak E.V. (2005). What RHIC experiments and theory tell us about properties of quark-gluon plasma?. Nucl. Phys. A750: 64–83, hep-ph/0405066 ADSGoogle Scholar
- 11.Policastro E.V., Son D.T. and Starinets A.O. (2001). The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma. Phys. Rev. Lett. 87: 081601, hep-th/0104066 CrossRefADSGoogle Scholar
- 12.Kovtun P., Son D.T. and Starinets A.O. (2005). Viscosity in strongly interacting quantum field theories from black hole physics. Phys. Rev. Lett. 94: 111601, hep-th/0405231 CrossRefADSGoogle Scholar
- 13.Baym G., Monien H., Pethick C.J. and Ravenhall D.G. (1990). Transverse interactions and transport in relativistic quark-gluon and electromagnetic plasmas. Phys. Rev. Lett. 64: 1867–1870 CrossRefADSGoogle Scholar
- 14.Arnold P., Moore G.D. and Yaffe L.G. (2000). Transport coefficients in high temperature gauge theories. I: Leading-log results. JHEP 11: 001, hep-ph/0010177CrossRefADSGoogle Scholar
- 15.Csernai L.P., Kapusta J.I. and McLerran L.D. (2006). On the strongly-interacting low-viscosity matter created in relativistic nuclear collisions. Phys. Rev. Lett. 97: 152303, nucl-th/0604032CrossRefADSGoogle Scholar
- 16.Huot, S.C., Jeon, S., Moore, G.D.: Shear viscosity in weakly coupled N = 4 super Yang-Mills theory compared to QCD. hep-ph/0608062Google Scholar
- 17.Shuryak, E.: Emerging theory of strongly coupled quark-gluon plasma. hep-ph/0703208Google Scholar
- 18.Nastase, H.: The RHIC fireball as a dual black hole. hep-th/0501068Google Scholar
- 19.Shuryak, E., Sin, S.-J., Zahed, I.: A gravity dual of RHIC collisions. hep-th/0511199Google Scholar
- 20.Maldacena J.M. (1998). The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2: 231–252, hep-th/9711200 MATHGoogle Scholar
- 21.Gubser S.S., Klebanov I.R. and Polyakov A.M. (1998). Gauge theory correlators from non-critical string theory. Phys. Lett. B428: 105–114, hep-th/9802109 ADSGoogle Scholar
- 22.Witten E. (1998). Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2: 253–291, hep-th/9802150 MATHGoogle Scholar
- 23.Heinz U.W. (2005). Thermalization at RHIC. AIP Conf. Proc. 739: 163–180, nucl-th/0407067 CrossRefADSGoogle Scholar
- 24.Arnold P., Lenaghan J., Moore G.D. and Yaffe L.G. (2005). Apparent thermalization due to plasma instabilities in quark gluon plasma. Phys. Rev. Lett. 94: 072302, nucl-th/0409068 CrossRefADSGoogle Scholar
- 25.Baier R., Mueller A.H., Schiff D. and Son D.T. (2001). ‘Bottom-up’ thermalization in heavy ion collisions. Phys. Lett. B 502: 51–58, hep-ph/0009237 CrossRefADSGoogle Scholar
- 26.Molnar D. and Gyulassy M. (2002). Saturation of elliptic flow at RHIC: results from the covariant elastic parton cascade model MPC. Nucl. Phys. A 697: 495–520, nucl-th/0104073 CrossRefADSGoogle Scholar
- 27.Friess, J.J., Gubser, S.S., Michalogiorgakis, G., Pufu, S.S.: Expanding plasmas and quasinormal modes of anti-de Sitter black holes. hep-th/0611005Google Scholar
- 28.Kovtun P.K. and Starinets A.O. (2005). Quasinormal modes and holography. Phys. Rev. D72: 086009, hep-th/0506184 ADSGoogle Scholar
- 29.Friess, J.J., Gubser, S.S. Michalogiorgakis, G., Pufu, S.S.: The stress tensor of a quark moving through N = 4 thermal plasma. hep-th/0607022Google Scholar
- 30.Herzog, C.P., Karch, A., Kovtun, P., Kozcaz, C., Yaffe, L.G.: Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma. hep-th/0605158Google Scholar
- 31.Gubser, S.S.: Drag force in AdS/CFT. hep-th/0605182Google Scholar
- 32.Gubser, S.S.: Comparing the drag force on heavy quarks in N = 4 super-Yang-Mills theory and QCD. hep-th/0611272Google Scholar
- 33.Rapp R. and Hees H. (2005). Thermalization of heavy quarks in the quark-gluon plasma. Phys. Rev. C 71: 034907, nucl-th/0412015 CrossRefADSGoogle Scholar
- 34.Greco V., Rapp R. and Hees H. (2006). Heavy-quark probes of the quark-gluon plasma at RHIC. Phys. Rev. C73: 034913, nucl-th/0508055 ADSGoogle Scholar
- 35.STAR Collaboration, Abelev, B.I., et al.: Transverse momentum and centrality dependence of high-p(T) non-photonic electron suppression in Au + Au collisions at s(NN)**(1/2) = 200-GeV. nucl-ex/0607012Google Scholar
- 36.PHENIX Collaboration, Adare, A.: Energy loss and flow of heavy quarks in Au + Au collisions at \(\sqrt{s_{\rm NN}} = 200\,{\rm GeV}\) . nucl-ex/0611018Google Scholar
- 37.PHENIX Collaboration, Adler, S.S., et al.: Modifications to di-jet hadron pair correlations in Au + Au collisions at s(NN)**(1/2) = 200-GeV. nucl-ex/0507004Google Scholar
- 38.Gubser, S.S., Pufu, S.S.: Master field treatment of metric perturbations sourced by the trailing string. hep-th/0703090Google Scholar
- 39.Yarom, A.: On the energy deposited by a quark moving in an N = 4 SYM plasma. hep-th/0703095Google Scholar
- 40.Casalderrey-Solana, J., Teaney, D.: Heavy quark diffusion in strongly coupled N = 4 Yang Mills. hep-ph/0605199Google Scholar
- 41.Gubser, S.S.: Momentum fluctuations of heavy quarks in the gauge-string duality. hep-th/0612143Google Scholar
- 42.Casalderrey-Solana, J., Teaney, D.: Transverse momentum broadening of a fast quark in a N = 4 Yang Mills plasma. hep-th/0701123Google Scholar
- 43.Gubser S.S., Klebanov I.R. and Peet A.W. (1996). Entropy and temperature of black 3-Branes. Phys. Rev. D 54: 3915–3919, hep-th/9602135 CrossRefADSGoogle Scholar
- 44.Gubser S.S., Klebanov I.R. and Tseytlin A.A. (1998). Coupling constant dependence in the thermodynamics of N = 4 supersymmetric Yang-Mills theory. Nucl. Phys. B 534: 202–222, hep-th/9805156 MATHCrossRefADSGoogle Scholar