Advertisement

General Relativity and Gravitation

, Volume 39, Issue 10, pp 1545–1550 | Cite as

The return of a static universe and the end of cosmology

  • Lawrence M. Krauss
  • Robert J. Scherrer
Open Access
Essay

Abstract

We demonstrate that as we extrapolate the current ΛCDM universe forward in time, all evidence of the Hubble expansion will disappear, so that observers in our “island universe” will be fundamentally incapable of determining the true nature of the universe, including the existence of the highly dominant vacuum energy, the existence of the CMB, and the primordial origin of light elements. With these pillars of the modern Big Bang gone, this epoch will mark the end of cosmology and the return of a static universe. In this sense, the coordinate system appropriate for future observers will perhaps fittingly resemble the static coordinate system in which the de Sitter universe was first presented.

Keywords

Dark Energy Static Universe Main Sequence Star Hubble Expansion Static Coordinate System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Krauss L.M. and Turner M.S. (1995). Gen. Rel. Grav. 27: 1137 zbMATHCrossRefGoogle Scholar
  2. 2.
    Perlmutter S., et al. (1999). Astrophysics 517: 565 CrossRefGoogle Scholar
  3. 3.
    Reiss A.G., et al. (1998). Astron. J. 116: 1009 CrossRefADSGoogle Scholar
  4. 4.
    Krauss L.M. and Starkman G.D. (2000). Astrophysics 531: 22 CrossRefGoogle Scholar
  5. 5.
    Starobinsky A.A. (2000). Grav. Cosmol. 6: 157 zbMATHGoogle Scholar
  6. 6.
    Gudmundsson E.H. and Bjornsson G. (2002). Astrophysics 565: 1 CrossRefGoogle Scholar
  7. 7.
    Loeb A. (2002). Phys. Rev. D 65: 047301 CrossRefADSGoogle Scholar
  8. 8.
    Chiueh T. and He X.-G. (2002). Phys. Rev. D 65: 123518 CrossRefADSGoogle Scholar
  9. 9.
    Busha M.T., Adams F.C., Wechsler R.H. and Evrard A.E. (2003). Astrophysics 596: 713 CrossRefGoogle Scholar
  10. 10.
    Nagamine K. and Loeb A. (2003). New Astron. 8: 439 CrossRefADSGoogle Scholar
  11. 11.
    Nagamine K. and Loeb A. (2004). New Astron. 9: 573 CrossRefADSGoogle Scholar
  12. 12.
    Heyl J.S. (2005). Phys. Rev. D 72: 107302 CrossRefADSGoogle Scholar
  13. 13.
    Krauss L.M. and Scherrer R.J. (2007). Phys. Rev. D 75: 083524 CrossRefADSGoogle Scholar
  14. 14.
    Tielens A.G.G.M. (2005). The Physics and Chemistry of the Interstellar Medium. Cambridge University Press, Cambridge Google Scholar
  15. 15.
    Wagoner R.V., Fowler W.A. and Hoyle F. (1967). Astrophysics 148: 3 CrossRefGoogle Scholar
  16. 16.
    Alpher R.A., Bethe H. and Gamow G. (1948). Phys. Rev. 73: 803 CrossRefADSGoogle Scholar
  17. 17.
    Alpher R.A., Follin J.W. and Herman R.C. (1953). Phys. Rev. 92: 1347 zbMATHCrossRefADSGoogle Scholar
  18. 18.
    Adams F.C. and Laughlin G. (1997). Rev. Mod. Phys. 69: 337 CrossRefADSGoogle Scholar
  19. 19.
    Kirkman D., Tytler D., Suzuki N., O’Meara J.M. and Lubin D. (2003). Ap. J. Suppl. 149: 1 CrossRefADSGoogle Scholar
  20. 20.
    Weinberg S. (1987). Phys. Rev. Lett. 59: 2607 CrossRefADSGoogle Scholar
  21. 21.
    Garriga J., Livio M. and Vilenkin A. (2000). Phys. Rev. D 61: 023503 CrossRefADSGoogle Scholar
  22. 22.
    Rothman T. and Ellis G.F.R. (1987). Observatory 107: 24 ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of PhysicsCase Western Reserve UniversityClevelandUSA
  2. 2.Department of Physics and AstronomyVanderbilt UniversityNashvilleUSA

Personalised recommendations