General Relativity and Gravitation

, Volume 39, Issue 10, pp 1539–1544 | Cite as

How many black holes fit on the head of a pin?

Open Access
Essay

Abstract

The Bekenstein–Hawking entropy of certain black holes can be computed microscopically in string theory by mapping the elusive problem of counting microstates of a strongly gravitating black hole to the tractable problem of counting microstates of a weakly coupled D-brane system, which has no event horizon, and indeed comfortably fits on the head of a pin. We show here that, contrary to widely held beliefs, the entropy of spherically symmetric black holes can easily be dwarfed by that of stationary multi-black-hole “molecules” of the same total charge and energy. Thus, the corresponding pin-sized D-brane systems do not even approximately count the microstates of a single black hole, but rather those of a zoo of entropically dominant multicentered configurations.

References

  1. 1.
    Wald, R.M.: The thermodynamics of black holes. Living Rev. Relat. 4, 6 (2001) http://relativity.livingreviews.org/Articles/lrr-2001-6/Google Scholar
  2. 2.
    Damour, T.: The entropy of black holes: A primer. arXiv:hep-th/0401160Google Scholar
  3. 3.
    Strominger A. and Vafa C. (1996). Mioscopic origin of the Bekenstein–Hawking entropy. Phys. Lett. B 379: 99 CrossRefADSGoogle Scholar
  4. 4.
    Maldacena, J.M., Strominger, A., Witten E.: Black hole entropy in M-theory. JHEP 9712, 002 (1997) (arXiv:hep-th/9711053)Google Scholar
  5. 5.
    Vafa C. (1998). Black holes and Calabi-Yau threefolds. Adv. Theor. Math. Phys. 2: 207 MATHGoogle Scholar
  6. 6.
    Aquinas, T.: Summa theologiae I. q. 52 art. 3 (1274), http://www.newadvent.org/summa/105203.htm; see also http://plato.stanford.edu/entries/duns-scotus/
  7. 7.
    Witten E. (1982). Constraints On supersymmetry breaking. Nucl. Phys. B 202: 253 CrossRefADSGoogle Scholar
  8. 8.
    Denef, F., Moore, G.W.: Split states, entropy enigmas, holes and halos. arXiv:hep-th/0702146Google Scholar
  9. 9.
    Ferrara S., Kallosh R. and Strominger A. (1995). N = 2 extremal black holes. Phys. Rev. D 52: 5412 CrossRefADSGoogle Scholar
  10. 10.
    Strominger A. (1996). Maoscopic entropy of N = 2 extremal black holes. Phys. Lett. B 383: 39 CrossRefADSGoogle Scholar
  11. 11.
    Behrndt K., Lust D. and Sabra W.A. (1998). Stationary solutions of N = 2 supergravity. Nucl. Phys. B 510: 264 MATHCrossRefADSGoogle Scholar
  12. 12.
    Denef, F.: Supergravity flows and D-brane stability. JHEP 0008, 050 (2000) (arXiv:hep-th/0005049)Google Scholar
  13. 13.
    Lopes Cardoso, G., de Wit, B., Kappeli, J., Mohaupt, T.: Stationary BPS solutions in N = 2 supergravity with R**2 interactions. JHEP 0012, 019 (2000) (arXiv:hep-th/0009234)Google Scholar
  14. 14.
    Bates, B., Denef, F.: Exact solutions for supersymmetric stationary black hole composites (arXiv:hep-th/0304094)Google Scholar
  15. 15.
    Denef, F.: Quantum quivers and Hall/hole halos. JHEP 0210, 023 (2002) (arXiv:hep-th/0206072)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Instituut voor Theoretische FysicaKU LeuvenLeuvenBelgium
  2. 2.NHETC and Department of Physics and AstronomyRutgers UniversityPiscatawayUSA

Personalised recommendations