General Relativity and Gravitation

, Volume 39, Issue 11, pp 1929–1961 | Cite as

Republication of: Perturbations of a cosmological model and angular variations of the microwave background (By R.K. Sachs and A.M. Wolfe)

  • R. K. Sachs
  • A. M. Wolfe
  • G. Ellis
  • J. Ehlers
  • A. KrasińskiEmail author
Golden Oldie


Cosmological Model Cosmic Microwave Background Angular Variation Gravitational Radiation Cosmic Microwave Background Anisotropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sachs R.K. and Wolfe A.M. (1967). Perturbations of a cosmological model and angular variations of the microwave background. Astrophys. J. 147: 73–90 CrossRefADSGoogle Scholar
  2. 2.
    Partridge R.B. (1995). 3K: The Cosmic Microwave Background Radiation. Cambridge University Press, Cambridge CrossRefGoogle Scholar
  3. 3.
    Jones, A.W., Lasenby, A.N.: The cosmic microwave background.
  4. 4.
    Anninos, P.: Computational cosmology: from the early universe to the large scale structure.
  5. 5.
    Dodelson S. (2003). Modern Cosmology. Elsevier, Amsterdam Google Scholar
  6. 6.
    Conklin E.K. and Bracewell R.N. (1967). Isotropy of cosmic background radiation at 10,690 MHz. Phys. Rev. Lett. 18: 614 CrossRefADSGoogle Scholar
  7. 7.
    Partridge R.B. and Wilkinson D.T. (1967). Isotropy and homogeneity of the universe from measurements of the Cosmic Microwave Background. Phys. Rev. Lett. 18: 557 CrossRefADSGoogle Scholar
  8. 8.
    Corey B.E. and Wilkinson D.T. (1976). A measurement of the cosmic microwave background anisotropy at 19GHz. Bull. Am. Astron. Soc. 8: 351 ADSGoogle Scholar
  9. 9.
    Rees M.J. and Sciama D.W. (1968). Large scale density inhomogeneities in the universe. Nature 217: 511–516 CrossRefADSGoogle Scholar
  10. 10.
    Thorne K.S. (1967). Primordial element formation, primordial magnetic fields and the isotropy of the universe. Astrophys. J. 48: 51–68 CrossRefADSGoogle Scholar
  11. 11.
    White P.C. (1973). C -perturbations of a cosmological model. J. Math. Phys. 14: 831–836 CrossRefADSGoogle Scholar
  12. 12.
    Perjes, Z., Vasuth, M., Czinner, V., Eriksson, D. C perturbations of FRW models with a cosmological constant. Astron. Astrophys. 431: 415–421 (2005)CrossRefzbMATHADSGoogle Scholar
  13. 13.
    Afshordi, N. Loh, Y.-S. and Strauss, M.A.: Cross-Correlation of the Cosmic Microwave Background with the 2MASS Galaxy Survey: Signatures of Dark Energy, Hot Gas, and Point Sources. Phys. Rev. D69, 083524 (2004); astro-ph/0308260Google Scholar
  14. 14.
    Lancaster, A., Genova-Santos, R., Falcon, N., Grainge, K., Gutierrez, C., Kneissl, R., Marshall, P., Pooley, G., Rebolo, R., Rubino-Martin, J.-A., Saunders, R.D.E., Waldram, E. and Watson, R.A.: Very Small Array observations of the Sunyaev-Zel’dovich effect in nearby galaxy clusters. Mon. Not. Roy. Astron. Soc. 359, 16–30 (2005); astro-ph/0405582Google Scholar
  15. 15.
    McEwen, J.D., Vielva, P., Hobson, M.P., Martinez-Gonzalez, E., and Lasenby, A.N.: Detection of the ISW effect and corresponding dark energy constraints. In: From dark halos to light. Proceedings of the XLIst Rencontres de Moriond, XXVIth Astrophysics Moriond Meeting. Eds. L. Tresse, S. Maurogordato and J. Trans Thanh Van (Editions Frontiers, 2006); arXiv:astro-ph/0605122v1Google Scholar
  16. 16.
    Giannantonio, T., Crittenden, R.G., Nichol, R.C., Scranton, R., Richards, G.T., Myers, A.D., Brunner, R.J., Gray, A.G., Connolly, A.J., Schneider, D.P.: A high redshift detection of the integrated Sachs–Wolfe effect. Phys. Rev. D74, 063520 (2006); astro-ph/0607572Google Scholar
  17. 17.
    Challinor, A.: Microwave background polarization in cosmological models. Phys. Rev. D62 (2000) 043004 (astro-ph/9911481)Google Scholar
  18. 18.
    Challinor A. (2000). Microwave background anisotropies from gravitational waves: the 1+3 covariant approach. Class.Quant.Grav. 17: 871–889 CrossRefzbMATHADSMathSciNetGoogle Scholar
  19. 19.
    Sachs R.K. and Ehlers J. (1971). Kinetic theory and cosmology. In: Chretien, M., Deser, S. and Goldstein, J (eds) Astrophysics and General Relativity Vol 2. Brandeis University Summer Institute in Theoretical Physics 1968, pp 335–378. Gordon and Breach, New York Google Scholar
  20. 20.
    Ehlers, J.: General relativity and kinetic theory. In: Sachs, R.K. (ed.) General Relativity and Cosmology, Proceedings of International School of Phyiscs ‘Enrico Fermi’, Course XLVII, Academic, New York (1971), p. 1Google Scholar
  21. 21.
    Challinor A. and Lasenby A. (1998). A covariant and gauge-invariant analysis of CMB anisotropies from scalar perturbations. Phys. Rev. D58: 023001 ADSGoogle Scholar
  22. 22.
    Challinor A. and Lasenby A. (1999). Cosmic microwave background anisotropies in the CDM model: a covariant and gauge-invariant approach. Astrophys. J. 513: 1 CrossRefADSGoogle Scholar
  23. 23.
    Ehlers J., Geren P. and Sachs R.K. (1968). Isotropic solutions of Einstein-Liouville equations. J. Math. Phys. 9: 1344 CrossRefADSGoogle Scholar
  24. 24.
    Ellis, G.F.R., van Elst, G.F.R.: Cosmological models (Cargese Lectures 1998). In: Lachieze-Ray, M. (ed.) Theoretical and Observational Cosmology. (Kluwer, Nato Series C: Mathematical and Physical Sciences, Vol 541, 1999), 1-116. [gr-qc/9812046]Google Scholar
  25. 25.
    Ellis, G.F.R.: Philosophy of cosmology. In: Butterfield J., Earman J. (ed) Handbook in Philosophy of Physics. Elsevier, Amsterdam (2006)
  26. 26.
    White M. and Hu W. (1997). The Sachs–Wolfe effect. Astron. Astrophys. 321: 8–9 ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • R. K. Sachs
    • 1
  • A. M. Wolfe
    • 2
  • G. Ellis
    • 3
  • J. Ehlers
    • 4
  • A. Krasiński
    • 5
    Email author
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of Physics0354 University of CaliforniaLa JollaUSA
  3. 3.Department of Mathematics and Applied MathematicsUniversity of Cape TownRondeboschSouth Africa
  4. 4.Max Planck Institut für Gravitationsphysik (Albert Einstein Institute)Golm bei PotsdamGermany
  5. 5.N. Copernicus Astronomical Center, Polish Academy of SciencesWarszawaPoland

Personalised recommendations