General Relativity and Gravitation

, Volume 39, Issue 9, pp 1403–1412 | Cite as

An embedding for general relativity and its implications for new physics

Research Article

Abstract

We show that any solution of the 4D Einstein equations of general relativity in vacuum with a cosmological constant may be embedded in a solution of the 5D Ricci-flat equations with an effective 4D cosmological “constant” Λ that is a specific function of the extra coordinate. For unified theories of the forces in higher dimensions, this has major physical implications.

Keywords

Cosmological constant Weak Equivalence Principle Higher dimensions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Campbell J.E. (1926). A course of differential geometry. Clarendon, Oxford MATHGoogle Scholar
  2. 2.
    Rippl S., Romero C. and Tavakol R. (1995). Class. Quant. Grav. 12: 2411 MATHCrossRefADSGoogle Scholar
  3. 3.
    Romero C., Tavakol R. and Zalaletdinov R. (1996). Gen. Rel. Grav. 28: 365 MATHCrossRefGoogle Scholar
  4. 4.
    Lidsey J.E., Romero C., Tavakol R. and Rippl S. (1997). Class. Quant. Grav. 14: 865 MATHCrossRefADSGoogle Scholar
  5. 5.
    Fonseca-Neto, J.B., Romero, C., Tavakol, R.: Preprint (2006)Google Scholar
  6. 6.
    Wesson P.S. (2006). Five-dimensional physics. World Scientific, Singapore MATHGoogle Scholar
  7. 7.
    Wesson P.S. and Poncede Leon J. (1992). J. Math. Phys. 33: 3883 MATHCrossRefADSGoogle Scholar
  8. 8.
    Poncede Leon J. (2001). Mod. Phys. Lett. A 16: 2291 CrossRefADSGoogle Scholar
  9. 9.
    Poncede Leon J. (2002). Int. J. Mod. Phys. 11: 1355 ADSGoogle Scholar
  10. 10.
    Seahra S.S. and Wesson P.S. (2003). Class. Quant. Grav. 20: 1321 MATHCrossRefADSGoogle Scholar
  11. 11.
    Mashhoon B., Liu H. and Wesson P.S. (1994). Phys. Lett. B 331: 305 CrossRefADSGoogle Scholar
  12. 12.
    Seahra S.S. and Wesson P.S. (2001). Gen. Rel. Grav. 33: 1731 MATHCrossRefADSGoogle Scholar
  13. 13.
    Wesson P.S. (2002). J. Math. Phys. 43: 2423 MATHCrossRefADSGoogle Scholar
  14. 14.
    Mashhoon B. and Wesson P.S. (2004). Class. Quant. Grav. 21: 3611 MATHCrossRefADSGoogle Scholar
  15. 15.
    Misner C.W., Thorne K. and Wheeler J.A. (1973). Gravitation. Freeman, San Francisco, 717 Google Scholar
  16. 16.
    Rindler W. (2001). Relativity: special, general and cosmological. Oxford Un. Press, Oxford, 362 MATHGoogle Scholar
  17. 17.
    Carroll S.M. (2004). Spacetime and geometry. Addison-Wesley, San Francisco, 284–447 Google Scholar
  18. 18.
    Rubakov V.A. and Shaposhnikov M.E. (1983). Phys. Lett. B 125: 139 CrossRefADSGoogle Scholar
  19. 19.
    Csaki C., Ehrlich J. and Grojean C. (2001). Nucl. Phys. B 604: 312 MATHCrossRefADSGoogle Scholar
  20. 20.
    Shiromizu T., Koyama K. and Torii T. (2003). Phys. Rev. D 68: 103513 CrossRefADSGoogle Scholar
  21. 21.
    Weinberg S. (1989). Rev. Mod. Phys. 61: 1 CrossRefADSGoogle Scholar
  22. 22.
    Ng Y.J. (1992). Int. J. Mod. Phys. D 1: 145 MATHCrossRefADSGoogle Scholar
  23. 23.
    Adler R., Casey B. and Jacob O.C. (1995). Am. J. Phys. 63: 620 CrossRefADSGoogle Scholar
  24. 24.
    Wesson P.S. and Liu H. (2001). Int. J. Mod. Phys. D 10: 905 MATHCrossRefADSGoogle Scholar
  25. 25.
    Carroll S.M. (2001). Living Rev. Rel. 4: 1 Google Scholar
  26. 26.
    Padmanabhan T. (2002). Class. Quant. Grav. 19: L167 MATHCrossRefADSGoogle Scholar
  27. 27.
    Peebles P.J.E. and Ratra B. (2003). Rev. Mod. Phys. 75: 559 CrossRefADSGoogle Scholar
  28. 28.
    Padmanabhan T. (2003). Phys. Rep. 380: 235 MATHCrossRefADSGoogle Scholar
  29. 29.
    Wesson P.S. (2002). Class. Quant. Grav. 19: 2825 MATHCrossRefADSGoogle Scholar
  30. 30.
    Wesson P.S. (2003). Gen. Rel. Grav. 35: 307 MATHCrossRefADSGoogle Scholar
  31. 31.
    Wesson P.S., Mashhoon B., Liu H. and Sajko W.N. (1999). Phys. Lett. B 456: 34 CrossRefADSGoogle Scholar
  32. 32.
    Youm D. (2000). Phys. Rev. D 62: 084002 CrossRefADSGoogle Scholar
  33. 33.
    Youm D. (2001). Mod. Phys. Lett. A 16: 2371 CrossRefADSGoogle Scholar
  34. 34.
    Wesson P.S. (2005). Astron. Astrophys. 441: 41 CrossRefADSGoogle Scholar
  35. 35.
    Reinhard R. (1996). STEP: testing the equivalence principle in space. European Space Agency, Groningen Google Scholar
  36. 36.
    Liu H. and Mashhoon B. (1995). Ann. Phys. (Leipzig) 4: 565 MATHADSGoogle Scholar
  37. 37.
    Mashhoon B., Wesson P.S. and Liu H. (1998). Gen. Rel. Grav. 30: 555 MATHCrossRefADSGoogle Scholar
  38. 38.
    Mashhoon, B., Liu, H., Wesson, P.S.: In: Jantzen, R.T., Keiser, G.M. (eds.) Proc. seventh Marcel Grossmann meeting, pp. 333–335. World Scientific, Singapore (1996)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of MissouriColumbiaUSA
  2. 2.Department of Physics and AstronomyUniversity of WaterlooWaterlooCanada

Personalised recommendations