Advertisement

General Relativity and Gravitation

, Volume 39, Issue 5, pp 567–582 | Cite as

Quasinormal modes for tensor and vector type perturbation of Gauss Bonnet black hole using third order WKB approach

  • Sayan K. Chakrabarti
Research Article

Abstract

We obtain the quasinormal modes for tensor perturbations of Gauss–Bonnet (GB) black holes in d = 5, 7, 8 dimensions and vector perturbations in d =  5, 6, 7 and 8 dimensions using third order WKB formalism. The tensor perturbation for black holes in d = 6 is not considered because of the fact that the black hole is unstable to tensor mode perturbations. In the case of uncharged GB black hole, for both tensor and vector perturbations, the real part of the QN frequency increases as the Gauss–Bonnet coupling (α′) increases. The imaginary part first decreases upto a certain value of α′ and then increases with α′ for both tensor and vector perturbations. For larger values of α′, the QN frequencies for vector perturbation differs slightly from the QN frequencies for tensorial one. It has also been shown that as α′ → 0, the quasinormal frequencies for tensor and vector perturbations of the Schwarzschild black hole can be obtained. We have also calculated the quasinormal spectrum of the charged GB black hole for tensor perturbations. Here we have found that the real oscillation frequency increases, while the imaginary part of the frequency falls with the increase of the charge. We also show that the quasinormal frequencies for scalar field perturbations and the tensor gravitational perturbations do not match as was claimed in the literature. The difference in the result increases if we increase the GB coupling.

Keywords

Quasinormal modes Gauss–Bonnet black holes Vector and Tensor perturbations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kokkotas K.D. and Schmidt B.G. (1999). Living Rev. Rel. 2: 2 MathSciNetGoogle Scholar
  2. 2.
    Nollert H.-P. (1999). Class. Quantum Grav. 16: R159 MATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Regge T. and Wheeler J.A. (1957). Phys. Rev. 108: 1063 MATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Zerilli F.J. (1970). Phys. Rev. D2: 2141 ADSMathSciNetGoogle Scholar
  5. 5.
    Vishveshwara C.V. (1970). Phys. Rev. D1: 2870 ADSGoogle Scholar
  6. 6.
    Vishveshwara C.V. (1970). Nature 227: 936 CrossRefADSGoogle Scholar
  7. 7.
    Kokkotas, K.D., Stergioulas, N.: In: Mouråo A.M., et al. (eds.). Proceedings of the 5th International, Workshop on New Worlds in Astroparticle Physics, Faro, Portugal, 8–10 January 2005. World Scientific, Singapore (2006)Google Scholar
  8. 8.
    Birmingham D., Sachs I. and Solodukhin S.N. (2002). Phys. Rev. Lett. 88: 151301 CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Birmingham D., Sachs I. and Solodukhin S.N. (2003). Phys. Rev. D67: 104026 ADSMathSciNetGoogle Scholar
  10. 10.
    Hod S. (1998). Phys. Rev. Lett. 81: 4293 MATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Dreyer O. (2003). Phys. Rev. Lett. 90: 081301 CrossRefADSGoogle Scholar
  12. 12.
    Motl L. and Neitzke A. (2003). Adv. Theor. Math. Phys. 7: 307 MathSciNetGoogle Scholar
  13. 13.
    Das S. and Shankaranarayanan S. (2005). Class. Quantum Grav. 22: L7 MATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Ghosh A., Shankaranarayanan S. and Das S. (2006). Class. Quantum Grav. 23: 1851 MATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Natário J. and Schiappa R. (2004). Adv. Theor. Math. Phys. 8: 1001 MATHMathSciNetGoogle Scholar
  16. 16.
    Sen A. (2006). JHEP 0603: 008 CrossRefADSGoogle Scholar
  17. 17.
    Moura F. and Schiappa R. (2007). Class. Quantum Grav. 24: 361 MATHCrossRefADSGoogle Scholar
  18. 18.
    Scherk J. and Schwarz J.H. (1974). Nucl. Phys. B81: 118 CrossRefADSGoogle Scholar
  19. 19.
    Zwiebach B. (1985). Phys. Lett B156: 315 ADSGoogle Scholar
  20. 20.
    Boulware D.G. and Deser S. (1985). Phys. Rev. Lett. 55: 2656 CrossRefADSGoogle Scholar
  21. 21.
    Wheeler J.T. (1986). Nucl. Phys. B268: 737 CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Wheeler J.T. (1986). Nucl. Phys. B273: 732 CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Wiltshire D.L. (1988). Phys. Rev. D38: 2445 ADSMathSciNetGoogle Scholar
  24. 24.
    Meissner K.A. and Olechowski M. (2002). Phys. Rev. D65: 064017 ADSMathSciNetGoogle Scholar
  25. 25.
    Cvetic M., Nojiri S. and Odintsov S.D. (2002). Nucl. Phys. B628: 295 CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Nojiri S., Odintsov S.D. and Ogushi S. (2002). Phys. Rev. D65: 023521 ADSMathSciNetGoogle Scholar
  27. 27.
    Cho Y.M. and Neupane I.P. (2002). Phys. Rev. D66: 024044 ADSMathSciNetGoogle Scholar
  28. 28.
    Neupane I.P. (2003). Phys. Rev. D 67: 061501 CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Cai R.G. (2004). Phys. Lett. B582: 237 ADSGoogle Scholar
  30. 30.
    Clunan T., Ross S.F. and Smith D.J. (2004). Class. Quantum Grav. 21: 3447 MATHCrossRefADSMathSciNetGoogle Scholar
  31. 31.
    Barrau A., Grain J. and Alexeyev S.O. (2004). Phys. Lett. B584: 114 ADSGoogle Scholar
  32. 32.
    Iyer B.R., Iyer S. and Vishveshwara C.V. (1989). Class. Quantum Grav. 6: 1627 MATHCrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Konoplya R. (2005). Phys. Rev. D71: 024038 ADSMathSciNetGoogle Scholar
  34. 34.
    Abdalla E., Konoplya R.A. and Molina C. (2005). Phys. Rev. D72: 084006 ADSMathSciNetGoogle Scholar
  35. 35.
    Iyer S. (1987). Phys. Rev. D35: 3632 ADSGoogle Scholar
  36. 36.
    Dotti G. and Gleiser R.J. (2005). Class. Quantum Grav. 22: L1 MATHCrossRefADSMathSciNetGoogle Scholar
  37. 37.
    Gleiser R.J. and Dotti G. (2005). Phys. Rev. D72: 124002 ADSMathSciNetGoogle Scholar
  38. 38.
    Higuchi A. (1987). J. Math. Phys. 28: 1553 CrossRefADSMathSciNetGoogle Scholar
  39. 39.
    Rubin M.A. and Ordóñez C.R. (1984). J. Math. Phys. 25: 2888 MATHCrossRefADSMathSciNetGoogle Scholar
  40. 40.
    Ishibashi A. and Kodama H. (2003). Prog. Theor. Phys. 110: 701 MATHCrossRefADSMathSciNetGoogle Scholar
  41. 41.
    Kodama H. and Ishibashi A. (2003). Prog. Theor. Phys. 110: 901 MATHCrossRefADSMathSciNetGoogle Scholar
  42. 42.
    Chandrasekhar S. and Detweiler S. (1975). Proc. Roy. Soc. (London) A344: 441 ADSGoogle Scholar
  43. 43.
    Ferrari V. and Mashhoon B. (1984). Phys. Rev. D30: 295 ADSMathSciNetGoogle Scholar
  44. 44.
    Schutz B. and Will C.M. (1988). J. Astrophys. 291: L33 CrossRefADSGoogle Scholar
  45. 45.
    Iyer S. and Will C.M. (1985). Phys. Rev. D35: 3621 ADSGoogle Scholar
  46. 46.
    Konoplya R.A. (2003). Phys.Rev. D68: 024018 ADSGoogle Scholar
  47. 47.
    Andersson N. (1992). Proc. R. Soc. (London) A439: 47 ADSMathSciNetGoogle Scholar
  48. 48.
    Andersson N. and Linnaeus S. (1992). Phys. Rev. D46: 4179 ADSMathSciNetGoogle Scholar
  49. 49.
    Leaver E.W. (1985). Proc. R. Soc. (London) A402: 285 ADSMathSciNetGoogle Scholar
  50. 50.
    Cardoso V., Lemos J.P.S. and Yoshida S. (2004). Phys. Rev. D69: 044004 ADSMathSciNetGoogle Scholar
  51. 51.
    Chakrabarti S.K. and Gupta K.S. (2006). Int. J. Mod. Phys. A21: 3565 ADSMathSciNetGoogle Scholar
  52. 52.
    Konoplya R.A. (2003). Phys. Rev. D68: 124017 ADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Theory DivisionSaha Institute of Nuclear PhysicsCalcuttaIndia

Personalised recommendations