General Relativity and Gravitation

, Volume 39, Issue 2, pp 153–166 | Cite as

Asymptotic singular behaviour of inhomogeneous cosmologies in Einstein-Maxwell-dilaton-axion theory

  • Luis A. López
  • Nora Bretón
Research Article


We present the study of exact inhomogeneous cosmological solutions to a four-dimensional low energy limit of string theory containing non-minimal interacting electromagnetic, dilaton and axion fields. We focus at Einstein-Rosen solutions of Einstein-Maxwell-dilaton-axion equations. Several cases are analyzed and some of them have asymptotically velocity-term dominated (AVTD) singularities.


Cosmological Model Strong Energy Condition Raychaudhuri Equation String Cosmology Cosmological Singularity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shapere A., Trivedi S. and Wilczek F. (1991). Dual Dilaton Dyons. Mod. Phys. Lett. A6: 2677 ADSMathSciNetGoogle Scholar
  2. 2.
    Maeda K., Torii T. and Narita M. (1998). Do naked singularities generically occur in generalized theories of gravity?. Phys. Rev. Lett. 81: 5270 MATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Belinskii V. and Khalatnikov I. (1973). Effect of scalar and vector fields on the nature of the cosmological singularity. Sov. Phys. JETP 36: 591 MathSciNetGoogle Scholar
  4. 4.
    Belinskii V., Khalatnikov I. and Lifshitz E. (1982). A general solution of the Einstein equations with a time singularity. Adv. Phys. 31: 639 CrossRefADSGoogle Scholar
  5. 5.
    Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman (1973)Google Scholar
  6. 6.
    Berger B. (1999). Influence of scalar fields on the approach to a cosmological singularity. Phys. Rev. D 61: 023508–1 CrossRefADSGoogle Scholar
  7. 7.
    Weaver M., Isenberg J. and Berger B.K. (1998). Mixmaster behavior in inhomogeneous cosmological spacetimes. Phys. Rev. Lett. 80: 2984 CrossRefADSGoogle Scholar
  8. 8.
    Berger B.K. (2004). Hunting local mixmaster dynamics in spatially inhomogeneous cosmologies. Class. Quantum Grav. 21: 581 CrossRefGoogle Scholar
  9. 9.
    Damour T., Henneaux M., Rendall A.D. and Weaver M. (2002). Kasner-like behaviour for subcritical Einstein-matter systems. Ann. Henry Poincaré 3: 1049 MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Tseytlin A.A. (1995). Exact solutions of closed string theory. Class. Quantum Grav. 12: 2365 MATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Yazadjiev S.S. (2001). Exact inhomogeneous Einstein-Maxwell-Dilaton cosmologies. Phys. Rev. D 63: 063510 CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Clancy D., Feinstein A., Lidsey J.E. and Tavakol R. (1999). Inhomogeneous Einstein-Rosen string cosmology. Phys. Rev D 60: 043503 CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Lazkoz R. (1999). G 1 spacetimes with gravitational and scalar waves. Phys. Rev. D 60: 104008 CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Breton, N.: Exact solutions in Einstein-Maxwell-Dilaton-Axion Theory. In: Ibáñez, J. (ed.) Recent Developments in Gravitation, Proceedings of ERE99, pp. 179–184. Univ. País Vasco, España (2000)Google Scholar
  15. 15.
    Hanquin J.-L. and Demaret J. (1983). Gowdy S 1 ×  S 2 and S 3 inhomogeneous cosmological models. J. Phys. A 16: L5 CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Cisneros-Pérez, T., Herrera-Aguilar, A., Mejía-Ambriz, J.C., Rojas-Macías, V.: Gowdy cosmological models from stringy black holes. ArXiv:hep-th/0603250Google Scholar
  17. 17.
    Arnold, V.I.: Ordinary Differential Equations. MIT Press (1990)Google Scholar
  18. 18.
    Witten E. (1995). String theory dynamics in various dimensions. Nucl. Phys. B 443: 85 CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Narita M., Torii T. and Maeda K. (2000). Asymptotic singular behaviour of Gowdy spacetimes in string theory. Class. Quantum Grav. 17: 4597 MATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Ryan M.P. (1972). The oscillatory regime near the singularity in Bianchi-Type IX Universes. Ann. Phys. 70: 301 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department de FísicaCinvestav-IPND.F. MéxicoMexico

Personalised recommendations