General Relativity and Gravitation

, Volume 39, Issue 2, pp 167–178 | Cite as

On the expansion of a quantum field theory around a topological sector

Research Article


The idea of treating quantum general relativistic theories in a perturbative expansion around a topological theory has recently received attention, in the quantum gravity literature. We investigate the viability of this idea by applying it to conventional Yang–Mills theory on flat spacetime. This theory admits indeed a formulation as a modified topological theory, like general relativity. We find that the expansion around the topological theory coincides with the usual expansion around the free abelian theory, though the equivalence is non-trivial. In this context, the technique appears therefore to be viable, but not to bring particularly new insights. On the other hand, we point out that the relation of this expansion with the actual quantum BF theory is far from being transparent. Some implications for gravity are discussed.


Quantum Gravity Perturbative Expansion Loop Quantum Gravity Topological Theory Topological Sector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goroff M.H. and Sagnotti A. (1986). The ultraviolet behavior of Einstein gravity. Nucl. Phys. B 266: 709 CrossRefADSGoogle Scholar
  2. 2.
    Kiefer C. (2004). Quantum Gravity. Oxford Science Publications, Oxford MATHGoogle Scholar
  3. 3.
    Polchinski J. (1998). String Theory. Cambridge University Press, Cambridge Google Scholar
  4. 4.
    Rovelli C. (2004). Quantum Gravity. Cambridge University Press, Cambridge MATHGoogle Scholar
  5. 5.
    Freidel, L., Starodubtsev, A.: Quantum gravity in terms of topological observables. arXiv:hep-th/0501191Google Scholar
  6. 6.
    Witten E. (1988). (2+1)-Dimensional gravity as an exactly soluble system. Nucl. Phys. B 311: 46 CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Rovelli C. (1993). The basis of the Ponzano–Regge–Turaev–Viro–Ooguri quantum gravity model in the loop representation basis. Phys. Rev. D 48: 2702 CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Halpern M.B. (1977). Field strength formulation of quantum chromodynamics. Phys. Rev. D 16: 1798 CrossRefADSGoogle Scholar
  9. 9.
    Schaden M., Reinhardt H., Amundsen P.A. and Lavelle M.J. (1990). An effective action for Yang–Mills field strengths. Nucl. Phys. B 339: 595 CrossRefADSGoogle Scholar
  10. 10.
    Cattaneo A.S., Cotta-Ramusino P., Fucito F., Martellini M., Rinaldi M., Tanzini A. and Zeni M. (1998). Four-dimensional Yang–Mills theory as a deformation of topological BF theory. Commun. Math. Phys. 197: 571 [arXiv:hep-th/9705123] MATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Birmingham D., Blau M., Rakowski M. and Thompson G. (1991). Topological field theory. Phys. Rept. 209: 129 CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Plebanski J.F. (1977). On the separation between Einsteinien substructure. J. Math. Phys. 12: 2511 CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Capovilla R., Jacobson T., Dell J. and Mason L. (1991). Selfdual two forms and gravity class. Quant. Grav. 8: 41 MATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    De Pietri R. and Freidel L. (1999). so(4) Plebanski action and relativistic spin foam model. Class. Quant. Grav. 16: 2187 [arXiv:gr-qc/9804071]MATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Reisenberger, M.P.: Classical Euclidean general relativity from ‘left-handed area = right-handed area’. arXiv:gr-qc/9804061Google Scholar
  16. 16.
    Barrett J.W. and Crane L. (1998). Relativistic spin networks and quantum gravity. J. Math. Phys. 39: 3296 [arXiv:gr-qc/9709028]MATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Perez A. (2002). Spin foam quantization of SO(4) Plebanski’s action. Adv. Theor. Math. Phys. 5: 947 [Erratum-ibid. 6 (2003) 593] [arXiv:gr-qc/0203058] Google Scholar
  18. 18.
    MacDowell S.W. and Mansouri F. (1977). Unified geometric theory of gravity and supergravity. Phys. Rev. Lett. 38: 739 [Erratum-ibid. 38 (1977) 1376] CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Smolin, L., Starodubtsev, A.: General relativity with a topological phase: An action principle. arXiv:hep-th/0311163Google Scholar
  20. 20.
    Mattei F., Rovelli C., Speziale S. and Testa M. (2006). From 3-geometry transition amplitudes to graviton states. Nucl. Phys. B 739: 234 [arXiv:gr-qc/0508007] MATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Rovelli C. and Smolin L. (1990). Loop space representation of quantum general relativity. Nucl. Phys. B 331: 80 CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Rovelli C. and Smolin L. (1995). Discreteness of area and volume in quantum gravity. Nucl. Phys. B 442: 593 CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Conrady F., Doplicher L., Oeckl R., Rovelli C. and Testa M. (2004). Minkowski vacuum in background independent quantum gravity. Phys. Rev. D 69: 064019 [arXiv:gr-qc/0307118] CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Oeckl R. (2003). A ‘general boundary’ formulation for quantum mechanics and quantum gravity. Phys. Lett. B [arXiv:hep-th/0306025] MATHCrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Modesto L. and Rovelli C. (2005). Particle scattering in loop quantum gravity. Phys. Rev. Lett. 95: 191301 [arXiv:gr-qc/0502036] CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Rovelli C. (2006). Graviton propagator from background-independent quantum gravity. Phys. Rev. Lett. 97: 151301 [arXiv:gr-qc/0508124] CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Bianchi E., Modesto L., Rovelli C. and Speziale S. (2006). Graviton propagator in loop quantum gravity. Class. Quant. Grav. 23: 6989 [arXiv:gr-qc/0604044] MATHCrossRefADSMathSciNetGoogle Scholar
  28. 28.
    Speziale S. (2006). Towards the graviton from spinfoams: The 3D toy model. JHEP 05: 039 [arXiv:gr-qc/0512102] CrossRefMathSciNetGoogle Scholar
  29. 29.
    Livine, E., Speziale, S., Willis, J.: Towards the graviton from spinfoams: higher order corrections in the 3d toy model. Phys. Rev. D [arXiv:gr-qc/0605123] (to appear)Google Scholar
  30. 30.
    Livine, E.R., Speziale, S.: Group integral techniques for the spinfoam graviton propagator. JHEP [arXiv:gr-qc/0608131] (to appear)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Centre de Physique Théorique de Luminy, Unité mixte de recherche (UMR 6207) du CNRS et des Universités de Provence (Aix-Marseille I), de la Meditarranée (Aix-Marseille II) et du Sud (Toulon-Var), laboratoire affilié à la FRUMAM (FR 2291)Université de la MéditerranéeMarseilleFrance
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  3. 3.Dipartimento di Fisica dell’Università “La Sapienza”, and INFN Sez. Roma1RomeItaly

Personalised recommendations