General Relativity and Gravitation

, Volume 38, Issue 12, pp 1861–1885 | Cite as

Pure type I supergravity and DE 10

  • Christian Hillmann
  • Axel Kleinschmidt
Research Article


We establish a dynamical equivalence between the bosonic part of pure type I supergravity in D = 10 and a D = 1 non-linear σ-model on the Kac–Moody coset space DE 10/K(DE 10) if both theories are suitably truncated. To this end we make use of a decomposition of DE 10 under its regular SO(9,9) subgroup. Our analysis also deals partly with the fermionic fields of the supergravity theory and we define corresponding representations of the generalised spatial Lorentz group K(DE 10).


Bianchi Identity Supergravity Theory Level Decomposition Supersymmetry Transformation Hide Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cremmer E., Julia B., Scherk J. (1978) Supergravity theory in 11 dimensions. Phys. Lett. B 76, 409–412CrossRefADSGoogle Scholar
  2. 2.
    Cremmer E., Julia B. (1979) The SO(8) supergravity. Nucl. Phys. B 159, 141–212MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    Marcus N., Schwarz J.H. (1983) Three-dimensional supergravity theories. Nucl. Phys. B 228, 145MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    Julia, B.: Application of supergravity to gravitation theories. In: De Sabbata, V., Schmutzer, E. (eds.) Unified Field Theories of more than 4 Dimensions, World Scientific Singapore, (1983)Google Scholar
  5. 5.
    de Wit B., Nicolai H. (1986) D =  11 Supergravity with local SU(8) invariance. Nucl. Phys. B 274, 363CrossRefADSGoogle Scholar
  6. 6.
    Hull C.M., Townsend P.K. (1995) Unity of superstring dualities. Nucl. Phys. B 438, 109–137, hep-th/9410167MATHMathSciNetCrossRefADSGoogle Scholar
  7. 7.
    de Wit B., Nicolai H. (2001) Hidden symmetries, central charges and all that. Class. Quant. Grav. 18, 3095–3112, hep-th/0011239MATHCrossRefADSGoogle Scholar
  8. 8.
    Iqbal A., Neitzke A., Vafa C. (2002) A mysterious duality. Adv. Theor. Math. Phys. 5, 769, hep-th/0111068MathSciNetGoogle Scholar
  9. 9.
    Ehlers, J.: Dissertation, Hamburg University (1957)Google Scholar
  10. 10.
    Julia, B.: Group disintegrations. In: Hawking, S.W., Roček, M. (eds.), Superspace and Supergravity, Proceedings of the Nuffield Workshop, Cambridge, England, June 22–July 12, 1980 pp. 331–350. Cambridge University Press, Cambridge (1981) LPTENS 80/16Google Scholar
  11. 11.
    Cremmer, E.: Supergravities in 5 dimensions. In: Hawking, S.W., Roček, M. (eds.), Superspace and Supergravity, Proceedings of the Nuffield Workshop, Cambridge, England, June 22–July 12, 1980 pp. 267–282. Cambridge University Press, Cambridge (1981)Google Scholar
  12. 12.
    Julia, B.: Kac–moody symmetry of gravitation and supergravity theories. In: Flato, M., Sally, P., Zuckerman, G. (eds.), Applications of Group Theory in Physics and Mathematical Physics Lectures in Applied Mathematics vol. 21, pp. 355–374. American Mathematical Society Providence (1985) LPTENS 82/22Google Scholar
  13. 13.
    Breitenlohner P., Maison D., Gibbons G.W. (1988) Four-dimensional black holes from Kaluza–Klein theories. Commun. Math. Phys. 120, 295MATHMathSciNetCrossRefADSGoogle Scholar
  14. 14.
    Cremmer, E., Julia, B., Lü, H., Pope, C.N.: Higher dimensional origin of D = 3 coset symmetries. hep-th/9909099Google Scholar
  15. 15.
    Bergshoeff E., de Roo M., de Wit B., van Nieuwenhuizen P. (1982) Ten-dimensional Maxwell–Einstein supergravity, its currents, and the issue of its auxiliary fields. Nucl. Phys. B 195, 97–136MATHCrossRefADSGoogle Scholar
  16. 16.
    Chamseddine A.H. (1981) N = 4 supergravity coupled to N = 4 matter and hidden symmetries. Nucl. Phys. B 185, 403–415CrossRefADSGoogle Scholar
  17. 17.
    Kleinschmidt A., Nicolai H. (2004) E 10 and SO(9,9) invariant supergravity. JHEP 0407, 041, hep-th/0407101MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    Damour T., Henneaux M. (2001) E 10, BE 10 and arithmetical chaos in superstring cosmology. Phys. Rev. Lett. 86:4749, hep-th/0012172MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    Damour T., Henneaux M., Nicolai H. (2003) Cosmological billiards. Class. Quant. Grav. 20, R145–R200, hep-th/0212256MATHMathSciNetCrossRefADSGoogle Scholar
  20. 20.
    Damour T., Henneaux M., Nicolai H. (2002) E 10 and a small tension expansion of M-theory. Phys. Rev. Lett. 89:221601, hep-th/0207267MathSciNetCrossRefADSGoogle Scholar
  21. 21.
    West P.C. (2000) Hidden superconformal symmetry in M theory. JHEP 0008, 007, hep-th/0005270CrossRefADSGoogle Scholar
  22. 22.
    West P.C. (2001) E 11 and M theory. Class. Quant. Grav. 18, 4443–4460, hep-th/0104081MATHCrossRefADSGoogle Scholar
  23. 23.
    Schnakenburg I., West P. (2004) Kac–Moody symmetries of ten-dimensional non-maximal supergravity theories. JHEP 0405, 019, hep-th/0401196MathSciNetCrossRefADSGoogle Scholar
  24. 24.
    Mizoguchi S., Mohri K., Yamada Y. (2006) Five-dimensional supergravity and hyperbolic Kac–Moody algebra G 2H. Class. Quant. Grav. 23:3181, hep-th/0512092MathSciNetCrossRefADSGoogle Scholar
  25. 25.
    Damour, T., Nicolai, H.: Eleven dimensional supergravity and the E 10/ K(E 10) σ-model at low A 9 levels. In: Group Theoretical Methods in Physics, Institute of Physics Conference Series No. 185, IoP Publishing, 2005, hep-th/0410245Google Scholar
  26. 26.
    Maharana J., Schwarz J.H. (1993) Noncompact symmetries in string theory. Nucl. Phys. B 390, 3–32, hep-th/9207016MathSciNetCrossRefADSGoogle Scholar
  27. 27.
    Kac V.G. (1990) Infinite dimensional Lie algebras. 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  28. 28.
    Gaberdiel M.R., Olive D.I., West P. (2002) A class of Lorentzian Kac–Moody algebras. Nucl. Phys. B 645, 403–437, hep-th/0205068MATHMathSciNetCrossRefADSGoogle Scholar
  29. 29.
    Nicolai, H., Fischbacher, T.: Low level representations of E 10 and E 11. In: Proceedings of the Ramanujan International Symposium on Kac–Moody Algebras and Applications, ISKMAA-2002, Chennai, India, 28–31 January 2002, hep-th/0301017Google Scholar
  30. 30.
    Kleinschmidt A., Schnakenburg I., West P. (2004) Very-extended Kac–Moody algebras and their interpretation at low levels. Class. Quant. Grav. 21:2493, hep-th/0309198MATHMathSciNetCrossRefADSGoogle Scholar
  31. 31.
    de Buyl S., Henneaux M., Paulot L. (2005) Hidden symmetries and Dirac fermions. Class. Quant. Grav. 22:3595, hep-th/0506009CrossRefADSGoogle Scholar
  32. 32.
    Damour T., Kleinschmidt A., Nicolai H. (2006) Hidden symmetries and the fermionic sector of eleven-dimensional supergravity. Phys. Lett. B 634, 319, hep-th/0512163MathSciNetCrossRefADSGoogle Scholar
  33. 33.
    de Buyl S., Henneaux M., Paulot L. (2006) Extended E 8 invariance of 11-dimensional supergravity. JHEP 0602:056, hep-th/0512292CrossRefGoogle Scholar
  34. 34.
    Damour T., Kleinschmidt A., Nicolai H. (2006) K(E 10), supergravity and fermions. JHEP 0608, 046, hep-th/0606105CrossRefADSGoogle Scholar
  35. 35.
    Berman S. (1989) On generators and relations for certain involutory subalgebras of Kac- Moody Lie algebra. Commun. Algebra 17, 3165–3185MATHGoogle Scholar
  36. 36.
    Kleinschmidt A., Nicolai H. (2006) IIA and IIB spinors from K(E 10). Phys. Lett. 637:107–112, hep-th/0603205MathSciNetCrossRefGoogle Scholar
  37. 37.
    Chapline G.F., Manton N.S. (1983) Unification Of Yang-Mills theory and supergravity in ten-dimensions. Phys. Lett. B 120, 105MathSciNetCrossRefADSGoogle Scholar
  38. 38.
    Green M.B., Schwarz J.H. (1984) Anomaly cancellation in supersymmetric D = 10 gauge theory and string theory. Phys. Lett. B 149, 117–122MathSciNetCrossRefADSGoogle Scholar
  39. 39.
    Green M.B., Schwarz J.H. (1985) Infinity cancellations in SO(32) superstring theory. Phys. Lett. B 151, 21–25MathSciNetCrossRefADSGoogle Scholar
  40. 40.
    Brown J., Ganguli S., Ganor O.J., Helfgott C. (2005) E 10 orbifolds. JHEP 0506:057, hep-th/0409037MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Max-Planck-Institut für GravitationsphysikAlbert-Einstein-InstitutPotsdamGermany

Personalised recommendations