General Relativity and Gravitation

, Volume 39, Issue 3, pp 227–240 | Cite as

Regularized expression for the gravitational energy-momentum in teleparallel gravity and the principle of equivalence

  • J. W. Maluf
  • M. V. O. Veiga
  • J. F. da Rocha-Neto
Research Article


The expression of the gravitational energy-momentum defined in the context of the teleparallel equivalent of general relativity is extended to an arbitrary set of real-valued tetrad fields, by adding a suitable reference space subtraction term. The characterization of tetrad fields as reference frames is addressed in the context of the Kerr space–time. It is also pointed out that Einstein’s version of the principle of equivalence does not preclude the existence of a definition for the gravitational energy-momentum density.


Gravitational energy Teleparallelism Principle of equivalence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maluf J.W., da Rocha-Neto J.F., Toríbio T.M.L., Castello-Branco K.H. (2002). Phys. Rev. D 65: 124001 [gr-qc/0204035]CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Maluf J.W., Faria F.F., Castello-Branco K.H. (2003). Class. Quantum Grav. 20: 4683 [gr-qc/0307019]MATHCrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Maluf J.W., Faria F.F. (2004). Annalen Phys. 13, 604. [gr-qc/0405134]MATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Maluf J.W. (2005). Gravit. Cosmol. 11, 284 [gr-qc/0412055]MATHMathSciNetGoogle Scholar
  5. 5.
    Arnowitt, R., Deser, S., Misner, C.W.: In: Witten, L. (ed.) Gravitation: an Introduction to Current Research p. 227 Wiley, New York (1962) [gr-qc/0405109]Google Scholar
  6. 6.
    Hehl, F.H., Lemke, J., Mielke, E.W.: Two lectures on fermions and gravity. In: Debrus, J., Hirshfeld, A.C. (ed.) Geometry and Theoretical Physics. Springer, Berlin Heidelberg New York (1991)Google Scholar
  7. 7.
    Misner C.W., Thorne K.S., Wheeler J.A. (1973) Gravitation. Freeman, San FranciscoGoogle Scholar
  8. 8.
    Pauli W.: Theory of Relativity p. 145. Dover, NY (1958)Google Scholar
  9. 9.
    Norton J. (1985). Stud. Hist. Phil. Sci. 16, 203CrossRefMathSciNetGoogle Scholar
  10. 10.
    Maluf J.W., da Rocha-Neto J.F. (1999). Gen. Rel. Grav. 31, 173 [gr-qc/9808001]MATHCrossRefADSGoogle Scholar
  11. 11.
    Maluf J.W., da Rocha-Neto J.F. (2001). Phys. Rev. D 64: 084014 [gr-qc/0002059]CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Brown, J.D., York, J.W. Jr.: Quasi-local energy in general relativity. In: Gotay, M.J., Marsden, J.E., Moncrief, V. (eds.) Proceedings of the Joint Summer Research Conference on Mathematical Aspects of Classical Field Theory, American Mathematical Society (1991); Phys. Rev. D 47, 1407 (1993)Google Scholar
  13. 13.
    Mashhoon, B.: Phys. Lett. A 145, 147 (1990); 143, 176 (1990)Google Scholar
  14. 14.
    Mashhoon B., Muench U. (2002). Annalen Phys. 11, 532 [gr-qc/0206082]MATHCrossRefADSGoogle Scholar
  15. 15.
    Mashhoon B. (2003). Annalen Phys. 12, 586 [hep-th/0309124]MATHCrossRefMathSciNetADSGoogle Scholar
  16. 16.
    Baekler P., Gürses M., Hehl F.W., McCrea J.D. (1988). Phys. Lett. A 128, 245CrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Pereira J.G., Vargas T., Zhang C.M. (2001). Class. Quantum Grav. 18, 833MATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • J. W. Maluf
    • 1
  • M. V. O. Veiga
    • 1
  • J. F. da Rocha-Neto
    • 2
  1. 1.Instituto de FísicaUniversidade de BrasíliaBrasíliaBrazil
  2. 2.Universidade Federal do TocantinsArraiasBrazil

Personalised recommendations