Advertisement

General Relativity and Gravitation

, Volume 38, Issue 10, pp 1507–1528 | Cite as

Curvature corrections and Kac–Moody compatibility conditions

  • Thibault Damour
  • Amihay Hanany
  • Marc Henneaux
  • Axel Kleinschmidt
  • Hermann Nicolai
Research Article

Abstract

We study possible restrictions on the structure of curvature corrections to gravitational theories in the context of their corresponding Kac–Moody algebras, following the initial work on E 10 in Damour and Nicolai [Class Quant Grav 22:2849 (2005)]. We first emphasize that the leading quantum corrections of M-theory can be naturally interpreted in terms of (non-gravity) fundamental weights of E 10. We then heuristically explore the extent to which this remark can be generalized to all over-extended algebras by determining which curvature corrections are compatible with their weight structure, and by comparing these curvature terms with known results on the quantum corrections for the corresponding gravitational theories.

Keywords

Root Lattice Simple Root Quantum Correction Heterotic String Curvature Correction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belinsky V.A., Khalatnikov I.M., Lifshitz E.M. (1970) Oscillatory approach to a singular point in the relativistic cosmology. Adv. Phys. 19, 525CrossRefADSGoogle Scholar
  2. 2.
    Damour T., Henneaux M. (2001). E 10, BE 10 and arithmetical chaos in superstring cosmology. Phys. Rev. Lett. 86: 4749 hep-th/0012172CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Damour T., de Buyl S., Henneaux M., Schomblond C. (2002) Einstein billiards and overextensions of finite-dimensional simple Lie algebras. JHEP 0208: 030, hep-th/0206125CrossRefADSGoogle Scholar
  4. 4.
    Damour T., Henneaux M., Nicolai H. (2003), Cosmological billiards. Class. Quant. Grav. 20, R 145 hep-th/0212256ADSMathSciNetGoogle Scholar
  5. 5.
    Damour T., Henneaux M., Julia B., Nicolai H. (2001), Hyperbolic Kac–Moody algebras and chaos in Kaluza-Klein models. Phys. Lett. B 509, 323 hep-th/0103094ADSMathSciNetGoogle Scholar
  6. 6.
    Damour T., Nicolai H. (2005), Higher order M theory corrections and the Kac–Moody algebra E 10. Class. Quant. Grav. 22: 2849 hep-th/0504153zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Mizoguchi, S., Mohri, K., Yamada, Y. Five-dimensional supergravity and hyperbolic Kac–Moody algebra \(G_2^H\), hep-th/0512092Google Scholar
  8. 8.
    Conway J.H., Sloane N.J.A. (1991) Sphere packings, lattices and groups. Grundlehren der mathematischen Wissenschaften, vol. 290, 2nd edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  9. 9.
    Cremmer, E., Julia, B., Lu, H., Pope, C.N. Higher-dimensional origin of D = 3 coset symmetries, hep-th/9909099Google Scholar
  10. 10.
    Kac V.G. Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, (1990)Google Scholar
  11. 11.
    Julia, B. In: Lectures in Applied Mathematics, vol. 21 (1985), AMS-SIAM, p. 335; preprint LPTENS 80/16Google Scholar
  12. 12.
    Kleinschmidt A., Nicolai H. (2004), E 10 and SO(9,9) invariant supergravity. JHEP 0407: 041hep-th/0407101CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Kaloper N., Meissner K.A. (1997), Duality beyond the first loop. Phys. Rev. D 56: 7940 hep-th/9705193CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Henneaux M., Julia B. (2003), Hyperbolic billiards of pure D = 4 supergravities. JHEP 0305: 047 hep-th/0304233CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Helgason, S., Differential geometry, Lie groups, and symmetric spaces. In: Graduate Studies in Mathematics, vol. 34. American Mathematical Society, (Providence 2001)Google Scholar
  16. 16.
    Hanany Julia, A., B., Keurentjes, A. unpublished; Keurentjes, A., Classifying orientifolds by flat n-gerbes. JHEP 0107, 010 (2001), hep-th/0106267Google Scholar
  17. 17.
    Brown J., Ganguli S., Ganor O.J., Helfgott C. (2005), E 10 orbifolds. JHEP 0506: 057 hep-th/0409037CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Gross D.J., Sloan J.H. (1987) The quartic effective action for the heterotic string. Nucl. Phys. B 291: 41CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Tseytlin A.A. (1996), Heterotic – type I superstring duality and low-energy effective actions. Nucl. Phys. B 467: 383 hep-th/9512081zbMATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Metsaev R.R., Tseytlin A.A. (1987) Curvature cubed terms in string theory effective actions. Phys. Lett. B 185: 52CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Bergshoeff E.A., de Roo M. (1989) The Quartic effective action of the heterotic string and supersymmetry. Nucl. Phys. B 328: 439CrossRefADSGoogle Scholar
  22. 22.
    Kleinschmidt A., Nicolai H. (2005), IIB supergravity and E 10. Phys. Lett. B 606: 391 hep-th/0411225CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    West P.C. (2001), E 11 and M theory. Class. Quant. Grav. 18: 4443 hep-th/0104081zbMATHCrossRefADSGoogle Scholar
  24. 24.
    Schnakenburg I., West P.C. (2001), Kac–Moody symmetries of 2B supergravity. Phys. Lett. B 517: 421–428 hep-th/0107081zbMATHCrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Schnakenburg I., West P.C. (2002), Massive IIA supergravity as a nonlinear realization. Phys. Lett. B 540: 137–145 hep-th/0204207zbMATHCrossRefADSMathSciNetGoogle Scholar
  26. 26.
    West P.C. (2004), The IIA, IIB and eleven dimensional theories and their common E 11 origin. Nucl. Phys. B 693: 76 hep-th/0402140zbMATHCrossRefADSGoogle Scholar
  27. 27.
    Peeters K., Vanhove P., Westerberg A. (2001), Supersymmetric higher-derivative actions in ten and eleven dimensions, the associated superalgebras and their formulation in superspace. Class. Quant. Grav. 18: 843 hep-th/0010167zbMATHCrossRefADSMathSciNetGoogle Scholar
  28. 28.
    Iengo R. (2002), Computing the R 4 term at two super-string loops. JHEP 0202: 035 hep-th/0202058CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    Damour T., Henneaux M., Nicolai H. (2002), E 10 and a “small tension expansion” of M-theory. Phys. Rev. Lett. 89: 221601 hep-th/0207267CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    Lambert, N., West, P.C. Enhanced coset symmetries and higher derivative corrections, hep-th/0603255Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Thibault Damour
    • 1
  • Amihay Hanany
    • 2
  • Marc Henneaux
    • 3
    • 4
  • Axel Kleinschmidt
    • 5
  • Hermann Nicolai
    • 5
  1. 1.Institut des Hautes Etudes ScientifiquesBures-sur-YvetteFrance
  2. 2.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Université Libre de Bruxelles and International Solvay InstitutesBruxellesBelgium
  4. 4.Centro de Estudios Científicos (CECS)ValdiviaChile
  5. 5.Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)PotsdamGermany

Personalised recommendations