Advertisement

General Relativity and Gravitation

, Volume 38, Issue 4, pp 643–651 | Cite as

Spacetime and Euclidean geometry

  • Dieter Brill
  • Ted Jacobson
Research Article

Abstract

Using only the principle of relativity and Euclidean geometry we show in this pedagogical article that the square of proper time or length in a two-dimensional spacetime diagram is proportional to the Euclidean area of the corresponding causal domain. We use this relation to derive the Minkowski line element by two geometric proofs of the spacetime Pythagoras theorem.

Keywords

Special relativity Line element 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wilson, E.B., Lewis, G.N.: The space-time manifold of relativity. The non-euclidean geometry of mechanics and electromagnetics. Proc. Amer. Acad. Boston 48, 389–507 (1913)Google Scholar
  2. 2.
    Robb, A.A.: A Theory of Time and Space. Cambridge University Press (1914); The Absolute Relations of Time and Space. Cambridge Univerity Press (1921) [a less technical survey]; Geometry of Time and Space. Cambridge University Press (1936) [a revised version]Google Scholar
  3. 3.
    Bondi, H., Ellis, G.F.R., Williams, R.M.: Relativity and Common Sense: A New Approach to Einstein (Dover, 1980). Flat and Curved Spacetimes. Oxford University Press (2000)Google Scholar
  4. 4.
    See, for example, Weisstein, E.W.: “Pythagorean Theorem,” from MathWorld—A Wolfram Web Resource, http://mathworld.wolfram.com/PythagoreanTheorem.html
  5. 5.
    Brill, D.: Black holes and wormholes in 2+1 dimensions. In: Cotsakis, S., Gibbons, G.W. (eds.), Mathematical and Quantum Aspects of Relativity and Cosmology. Lecture Notes in Physics vol. 537, pp. 143–179 Springer (2000)Google Scholar
  6. 6.
    Mermin, N.D.: Space-time intervals as light rectangles. Am. J. Phys. 66, 1077 (1998)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
  8. 8.
    Liebscher, D.E.: Relativitätstheorie mit Zirkel und Lineal. 2nd Ed. Akademie-Verlag, Berlin (1991)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.University of MarylandCollege ParkUSA

Personalised recommendations