General Relativity and Gravitation

, Volume 38, Issue 1, pp 83–119 | Cite as

Covariant Newtonian and relativistic dynamics of (magneto)-elastic solid model for neutron star crust

  • B. CarterEmail author
  • E. Chachoua
  • N. Chamel
Research Article


This work develops the dynamics of a perfectly elastic solid model for application to the outer crust of a magnetised neutron star. Particular attention is given to the Noether identities responsible for energy-momentum conservation, using a formulation that is fully covariant, not only (as is usual) in a fully relativistic treatment but also (sacrificing accuracy and elegance for economy of degrees of gravitational freedom) in the technically more complicated case of the Newtonian limit. The results are used to obtain explicit (relativistic and Newtonian) formulae for the propagation speeds of generalised (Alfven type) magneto-elastic perturbation modes.


Newtonian limit Elastic solid Noether identity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carter, B., Khalatnikov, I.M.: Momentum, vorticity, and helicity in covariant superfluid dynamics. Ann. Phys. 219, 243–265 (1992)CrossRefzbMATHADSMathSciNetGoogle Scholar
  2. 2.
    Langlois, D., Sedrakian, D., Carter, B.: Differential rotation of relativistic superfluid in neutron stars. Mon. Not. R. Astr. Soc. 297, 1198–1201 (1998) [astro-ph/9711042]Google Scholar
  3. 3.
    Kunzle, H.P.: Lagrangian formalism for adiabatic fluids on five-dimensional space-time. Canad. J. Phys. 64, 185–189 (1986)ADSMathSciNetGoogle Scholar
  4. 4.
    Duval, C., Gibbons, G., Horvathy, P.: Celestial mechanics, conformal structures, and gravitational waves. Phys. Rev. D 43, 3907–3902 (1991)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Carter, B., Khalatnikov, I.M.: Canonically covariant formulation of Landau's Newtonian superfluid dynamic. Rev. Math. Phys. 6, 277–304 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Cartan, E.: Sur les varits connexion affine et la thorie de la relativit generalise. Ann. Sci. Ecole Norm. Sup. 40, 325–412 (1923); Ann. Sci. Ecole Norm. Sup. 41, 1–25 (1924); Ann. Sci. Ecole Norm. Sup. 42, 17–88 (1925)Google Scholar
  7. 7.
    Carter, B., Chamel, N.: Covariant analysis of Newtonian multi-fluid models for neutron stars: I Milne – Cartan structure and variational formulation. Int. J. Mod. Phys. D 13, 291–325 (2004) [astro-ph/0305186]CrossRefzbMATHADSMathSciNetGoogle Scholar
  8. 8.
    Carter, B., Chamel, N.: Covariant analysis of Newtonian multi-fluid models for neutron stars: II Stress - energy tensors and virial theorems. Int. J. Mod. Phys. D14, 717 (2005) [astro–ph/0312414]Google Scholar
  9. 9.
    Carter, B., Chamel, N.: Covariant analysis of Newtonian multi-fluid models for neutron stars: III Transvective, viscous, and superfluid drag dissipation. Int. J. Mod. Phys. D14, 749 (2005) [astro-ph/0410660]Google Scholar
  10. 10.
    Battye, R.A., Carter, B., Chachoua, E., Moss, A.: Rigidity and stability of cold dark solid universe model. to appear in Phys. Rev. D (2005) [hep-th/0501244]Google Scholar
  11. 11.
    Palmer, D.M. et al.: A Giant γ-ray flare from the magnetar SGR 1806–20. Nature 434, 1107–1109 (2005) [astro-ph/0503030]CrossRefPubMedADSGoogle Scholar
  12. 12.
    Eichler, D.: Waiting for the big one: a new class of soft gamma ray repeater outbursts. Mon. Not. R. Astr. Soc. 335, 883–886 (2002) [astro-ph/0204512]CrossRefADSGoogle Scholar
  13. 13.
    Hurley, K. et al.: An exceptionally bright flare from SGR 1806–20 and the origins of short-duration γ-ray bursts. Nature 434, 1098–1103 (2005) [astro-ph/0502329]CrossRefPubMedADSGoogle Scholar
  14. 14.
    Trautman, A.: Invariance properties and conservation laws. In: Trautman, A., Pirani, F.A.E., Bondi, H. (eds.), Brandeis Lectures on General Relativity, pp. 158–200. Prentice Hall, New Jersey (1965)Google Scholar
  15. 15.
    Carter, B.: Elastic perturbation theory in general relativity and a variational principle for a rotating solid star. Commun. Math. Phys. 30, 261–286 (1973)CrossRefzbMATHADSGoogle Scholar
  16. 16.
    Carter, B.: Covariant Theory of Conductivity in Ideal Fluid or Solid Media. In: Carter, B., Anile, A.M., Choquet-Bruhat, Y. (eds.), Relativistic Fluid Dynamics C.I.M.E., Noto. (1987) Lecture Notes in Mathematics, vol. 1385, pp. 1–64. Springer-Verlag, Heidelberg (1989)Google Scholar
  17. 17.
    Schutz, B.: Perfect fluids in general relativity: velocity potentials and a variational principle. Phys. Rev. D 2, 2762–2773 (1970)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Landau, L.D., Lifshitz, E.M.: Theory of Elasticity. Pergamon, London (1959)Google Scholar
  19. 19.
    Souriau, J.M.: Géometrie et Relativité. Herman, Paris (1965)Google Scholar
  20. 20.
    DeWitt, B.: The quantisation of geometry. In: Witten, L. (ed.), Gravitation: An Introduction to Current Research, pp. 266–381. Wiley, New York (1962)Google Scholar
  21. 21.
    Carter, B., Quintana, H.: Foundations of general relativistic high pressure elasticity theory. Proc. Roy. Soc. Lond. A 331, 57–83 (1972)zbMATHADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Carter, B.: Interaction of Gravitational Waves with an Elastic Solid Medium. In: Deruelle, N., Piran, T. (eds.), Gravitational Radiation (Proc. 1982 Les Houches Summer School), pp. 455–464. North Holland, Amsterdam (1983) [gr-qc/0102113]Google Scholar
  23. 23.
    Carter, B.: Kalb-Ramond vorticity variational formulation of relativistic perfectly conducting fluid theory. Int. J. Mod. Phys. D 3, 15–21 (1974)CrossRefADSGoogle Scholar
  24. 24.
    Carter, B.: Vortex dynamics in superfluids. In: Bunkov, Yu.M., Godfrin, H. (eds.), Topological Defects and Non-equilibrium Dynamics of Symmetry Breaking Phase Transitions. (NATO ASI vol. C549. Les Houches 1999), pp. 267–301. Kluwer, Dordrecht (2000) [gr-qc/9907039]Google Scholar
  25. 25.
    Carter, B.: Speed of sound in a high pressure general relativistic solid. Phys. Rev. D 7, 1590–1593 (1973)CrossRefADSGoogle Scholar
  26. 26.
    Carter, B., Gaffet, B.: Standard covariant formulation for perfect fluid dynamics. J. Fluid. Mech. 186, 1–24 (1988)zbMATHCrossRefADSMathSciNetGoogle Scholar
  27. 27.
    Bekenstein, J.D., Oron, A.: Conservation of circulation in magnetohydrodynamics. Phys. Rev. E 62, 5594–5603 (2000) [astro-ph/0002045]CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    Bekenstein, J.D., Oron, E.: New conservation laws in general-relativistic magnetohydrodynamics. Phys. Rev. D 18, 1809–1819 (1978)CrossRefADSGoogle Scholar
  29. 29.
    Woltjer, L.: A theorem on force-free magnetic fields. Proc. Nat. Acad. Sci. USA 44, 489–491 (1958)zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.LuTh, Observatoire de ParisMeudonFrance
  2. 2.Copernicus Astronomical Center (CAMK)WarsawPoland

Personalised recommendations