General Relativity and Gravitation

, Volume 38, Issue 1, pp 33–60 | Cite as

Conformal aspects of the Palatini approach in Extended Theories of Gravity

  • Gianluca Allemandi
  • Monica Capone
  • Salvatore Capozziello
  • Mauro Francaviglia
Research Article

Abstract

The debate on the physical relevance of conformal transformations can be faced by taking the Palatini approach into account gravitational theories. We show that conformal transformations are not only a mathematical tool to disentangle gravitational and matter degrees of freedom (passing from the Jordan frame to the Einstein frame) but they acquire a physical meaning considering the bi-metric structure of Palatini approach which allows to distinguish between spacetime structure and geodesic structure. These facts are relevant at least at cosmological scales, while at small scale (i.e. in the spacetime regions relevant for observations) the conformal factor is slowly varying and its effects are not relevant. Examples of higher-order and non-minimally coupled theories are worked out and relevant cosmological solutions in Einstein frame and Jordan frame are discussed showing that also the interpretation of cosmological observations can drastically change depending on the adopted frame.

Keywords

Cosmology Conformal factor Jordan frame 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guth, A.: Phys. Rev. D 23, 347 (1981)CrossRefADSGoogle Scholar
  2. 2.
    Weinberg, S.: Gravitation and Cosmology. Wiley, New York N.Y. (1972)Google Scholar
  3. 3.
    Buchbinder, I.L., Odintsov, S.D., Shapiro, I.L.: Effective Action in Quantum Gravity, IOP Publishing Bristol (1992)Google Scholar
  4. 4.
    Brans, C., Dicke, R.H.: Phys. Rev. 124, 925 (1961)CrossRefMATHADSMathSciNetGoogle Scholar
  5. 5.
    Bondi, H.: Cosmology. Cambridge Univ. Press, Cambridge (1952)MATHGoogle Scholar
  6. 6.
    Capozziello, S., de Ritis, R., Rubano, C., Scudellaro, P.: La Rivista del Nuovo Cimento 4, 1 (1996)CrossRefGoogle Scholar
  7. 7.
    Sciama, D.W.: Mon. Not. R. Ast. Soc. 113, 34 (1953)MATHADSMathSciNetGoogle Scholar
  8. 8.
    Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space, Cambridge Univ. Press, Cambridge (1982)MATHGoogle Scholar
  9. 9.
    Vilkovisky, G.: Class. Quantum Grav. 9, 895 (1992)CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Gasperini, M., Veneziano, G.: Phys. Lett. 277B, 256 (1992)ADSMathSciNetGoogle Scholar
  11. 11.
    Magnano, G., Ferraris, M., Francaviglia, M.: Gen. Relativ. Grav. 19, 465 (1987)CrossRefMATHADSMathSciNetGoogle Scholar
  12. 12.
    Barrow, J., Ottewill, A.C.: J. Phys. A: Math. Gen. 16, 2757 (1983)CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Starobinsky, A.A.: Phys. Lett. 91B, 99 (1980)ADSGoogle Scholar
  14. 14.
    La, D., Steinhardt, P.J.: Phys. Rev.l 62, 376 (1989)CrossRefADSGoogle Scholar
  15. 15.
    Teyssandier P., Tourrenc, Ph.: J. Math. Phys. 24, 2793 (1983)CrossRefMATHADSMathSciNetGoogle Scholar
  16. 16.
    Maeda, K.: Phys. Rev. D 39, 3159 (1989)CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Capozziello, S., de Ritis, R., Marino A.A.: Gen. Relativ. Grav. 30, 1247, (1998)Google Scholar
  18. 18.
    Gottlöber, S., Schmidt, H.-J., Starobinsky, A.A.: Class. Quantum Grav. 7, 893 (1990)CrossRefMATHADSGoogle Scholar
  19. 19.
    Ruzmaikina, T.V., Ruzmaikin, A.A.: JETP, 30, 372 (1970)Google Scholar
  20. 20.
    Amendola, L., Battaglia-Mayer, A., Capozziello, S., Gottlöber, S., Müller, V., Occhionero, F., Schmidt, H.-J.: Class. Quantum Grav. 10, L43 (1993)CrossRefMATHADSGoogle Scholar
  21. 21.
    Battaglia-Mayer, A., Schmidt, H.-J. Class. Quantum Grav. 10, 2441 (1993)Google Scholar
  22. 22.
    Schmidt, H.-J.: Class. Quantum Grav. 7, 1023 (1990)CrossRefMATHADSGoogle Scholar
  23. 23.
    Amendola, L., Capozziello, S., Litterio, M., Occhionero, F.: Phys. Rev. D 45, 417 (1992)Google Scholar
  24. 24.
    Will, C.M.: Theory and Experiments in Gravitational Physics Cambridge Univ. Press, Cambridge, (1993)Google Scholar
  25. 25.
    Stelle, K.: Gen. Relativ. Grav. 9, 353 (1978)CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Sanders, R.H.: Ann. Rev. Astr. Ap. 2, 1 (1990)Google Scholar
  27. 27.
    Mannheim, P.D., Kazanas, D.: Ap. J. 342, 635 (1989)CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    Anderson, J.D. et al.: Phys. Rev. D 65, 082004 (2002)CrossRefADSGoogle Scholar
  29. 29.
    Quandt, I., Schmidt, H.-J.: Astron. Nachr. 312, 97; gr-qc/0109005 (1991)Google Scholar
  30. 30.
    Schneider, P., Ehlers, J., Falco, E.E.: Gravitational Lenses Springer–Verlag Berlin, (1992)Google Scholar
  31. 31.
    Krauss, L.M., White, M.: Ap. J. 397, 357 (1992)CrossRefADSGoogle Scholar
  32. 32.
    Ferraris, M., Francaviglia, M., Magnano, G: Class. Quantum Grav. 5, L95 (1988)CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Sokolowski, L.M.: Class. Quantum Grav. 6, 2045 (1989)CrossRefMATHADSMathSciNetGoogle Scholar
  34. 34.
    Magnano, G., Sokołowski, L.M.: Phys. Rev. D50, 5039 (1994)Google Scholar
  35. 35.
    Dicke, R.H.: Phys. Rev. 125, 2163 (1962)CrossRefMATHADSMathSciNetGoogle Scholar
  36. 36.
    Damour, T., Esposito-Farèse, G.: Class. Quantum Grav. 9 2093 (1992)CrossRefMATHADSGoogle Scholar
  37. 37.
    Faraoni, V.: Cosmology in Scalar-Tensor Gravity. Kluwer Academic, Dordrecht (2004)Google Scholar
  38. 38.
    Capozziello, S., de Ritis, R., Rubano, C., Scudellaro, P.: Int. Journ. Mod. Phys. D 5, 85 (1996)CrossRefADSMathSciNetGoogle Scholar
  39. 39.
    Torres, D.F., Vucetich, H.: Phys. Rev. D 54, 7373 (1996)CrossRefADSGoogle Scholar
  40. 40.
    Wald, R.M.: General Relativity (Chicago: University of Chicago Press) (1984)Google Scholar
  41. 41.
    Damour, T., Gibbons, G.W., Gundlach, C.: Phys. Rev.l 64 123 (1990)CrossRefADSGoogle Scholar
  42. 42.
    Jordan, P. Schwerkraft und Weltall (Braunschweig: Vieweg); 1959 157, 112 (1955)Google Scholar
  43. 43.
    Einstein, A.: Sitzung-ber. Preuss. Akad. Wiss., 414 (1925)Google Scholar
  44. 44.
    Ferraris, M., Francaviglia, M., Reina, C.: Gen. Relativ. Grav. 14, 243 (1982)CrossRefMATHADSMathSciNetGoogle Scholar
  45. 45.
    Buchdahl, H.A.: J. Phys. A 12, (8) 1229 (1979)Google Scholar
  46. 46.
    Ferraris, M., Francaviglia, M. Volovich, I.: Class. Quantum Grav. 11, 1505 (1994)CrossRefMATHADSMathSciNetGoogle Scholar
  47. 47.
    Allemandi, G., Borowiec, A., Francaviglia, M.: Phys. Rev. 70 D, 103503 (2004)Google Scholar
  48. 48.
    Vollick, D.N.: Phys. Rev. D68, 063510 (2003)Google Scholar
  49. 49.
    Meng, X., Wang, P.: Gen. Rel. Grav. 36, pp. 1947–1954 (2004); Gen. Rel. Grav. 36, pp. 2673–2680 (2004)Google Scholar
  50. 50.
    Sahni, V., Starobinsky, A.: Int. J. Mod. Phys. D9, 373 (2000)Google Scholar
  51. 51.
    Capozziello, S., de Ritis, R.: Class. Quantum Grav. 11, 107 (1994)CrossRefADSMathSciNetGoogle Scholar
  52. 52.
    Capozziello, S.S., de Ritis R.: Phys. Lett. 195A, 48 (1994)ADSMathSciNetGoogle Scholar
  53. 53.
    Mijic, M.B., Morris, M.S., Suen, W.: Phys. Rev. 34D, 2934 (1986)ADSGoogle Scholar
  54. 54.
    Barrow, J.D., Maeda, K.: Nucl. Phys. B 341, 294 (1990)CrossRefADSGoogle Scholar
  55. 55.
    Deruelle, N., Garriga, J., Verdaguer, E.: Phys. Rev. D 43, 1032 (1991)CrossRefADSGoogle Scholar
  56. 56.
    Demianski, M., de Ritis, R., Rubano, C., Scudellaro, P.: Phys. Rev. D 46, 1391 (1992)CrossRefADSMathSciNetGoogle Scholar
  57. 57.
    Capozziello, S., de Ritis, R., Marino, A.A.: Helv. Phys. Acta 69, 241 (1996)MATHADSGoogle Scholar
  58. 58.
    Linde, A.D.: Phys. Lett. 108B, 389 (1982)ADSMathSciNetGoogle Scholar
  59. 59.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products (New York: Academic) (1980)Google Scholar
  60. 60.
    Lucchin, F., Matarrese, S.: Phys. Rev. D 32, 1316 (1985)ADSGoogle Scholar
  61. 61.
    Burd, A.B., Barrow, J.D.: Nucl. Phys. B 308, 929 (1988)CrossRefADSMathSciNetGoogle Scholar
  62. 62.
    Tonry, J.L., Schmidt, B.P., Barris, B. et al.: Ap. J. 594, 1 (2003)CrossRefADSGoogle Scholar
  63. 63.
    de Bernardis, P. et al.: Nature 404, 955 (2000)CrossRefPubMedADSGoogle Scholar
  64. 64.
    Perlmutter, S. et al.: Ap. J. 517, 565 (1999)Google Scholar
  65. 65.
    Riess, A.G. et al.: Ap. J., 116, 1009 (1998)Google Scholar
  66. 66.
    Verde, L. et al.: MNRAS, 335, 432 (2002)Google Scholar
  67. 67.
    Steinhardt, P.J., Wang, L., Zlatev, I.: Phys. Rev. D 59, 123504 (1999)CrossRefADSGoogle Scholar
  68. 68.
    Capozziello, S.: Int. J. Mod. Phys. D11, 483 (2002)Google Scholar
  69. 69.
    Nojiri, S., Odintsov, S.D.: Phys. Rev. D68, 123512 (2003) S. Nojiri and S.D. Odintsov, Gen. Rel. Grav. 36 1765 (2004)Google Scholar
  70. 70.
    Flanagan, E.E.: Phys. Rev. Lett. 92, 071101 (2004)CrossRefPubMedADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Gianluca Allemandi
    • 1
  • Monica Capone
    • 2
  • Salvatore Capozziello
    • 3
  • Mauro Francaviglia
    • 4
  1. 1.Dipartimento di Matematica, Università di TorinoTorinoItaly
  2. 2.Politecnico di TorinoTorinoItaly
  3. 3.Dipartimento di Scienze FisicheUniversità “Federico II” di Napoli and INFN Sez. di Napoli, Complesso Universitario di Monte S. AngeloNapoliItaly
  4. 4.Dipartimento di MatematicaUniversità di TorinoTorinoItaly

Personalised recommendations