General Relativity and Gravitation

, Volume 37, Issue 8, pp 1339–1347 | Cite as

The universe as a five-dimensional black hole

Research Article

Abstract

We show the geometrical equivalence of two five-dimensional metrics, one describing a cosmology which smoothly embeds the standard Friedmann-Robertson-Walker-Lemaître models, and another describing an object which topologically is a black hole. The solutions can be interpreted using either membrane or induced-matter theory. We outline the main physics, wherein the horizon of the black hole is connected to a big bounce in the cosmology, which may in turn be connected to a phase change in the vacuum.

Keywords

Induced-matter theory Black holes Phase changes Inflation Braneworld scenarios 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liu, H., Wesson, P.S.: Astrophys. J. 562, 1 (2001)CrossRefGoogle Scholar
  2. 2.
    Overduin, J.M., Cooperstock, F.I.: Phys. Rev. 58, 043506 (1998); Overduin, J.M.: Astrophys. J. 517, L1 (1999)Google Scholar
  3. 3.
    Linde, A.D.: Inflation and Quantum Cosmology (Academic, Boston, 1990); Vilenkin, A.: Phys. Lett. B 117, 25 (1982)CrossRefGoogle Scholar
  4. 4.
    Ponce de Leon, J.: Mod. Phys. Lett. A 16, 2291 (2001); Ponce de Leon, J.: Int. J. Mod. Phys D, 13, 1053 (2003); Ponce de Leon, J.: Mod. Phys. Lett. A 17, 2425 (2002); Lake, K.: (2001) [gr-qc/0105119]; Blinkowski, A.A.: In: Proc. 11th. Seminar on Nonlinear Phenomena in Complex Systems, 5 (Minsk, Belarus, 2002); Bruni, D.: M.Sc. Thesis, Un. Waterloo, Canada (2002); Liu, H.: Phys. Lett. B 560, 149 (2003); Xu, L.: Liu, H., Wang, B.: (2003) [gr-qc/0304049]Google Scholar
  5. 5.
    Ponce de Leon, J.: Gen. Rel. Grav. 20, 539 (1988)CrossRefGoogle Scholar
  6. 6.
    Abolghasem, G., Coley, A.D., McManus, D.J.: J. Math. Phys. 37, 361 (1996)CrossRefGoogle Scholar
  7. 7.
    Wesson, P.S.: Space-Time-Matter. World Scientific, Singapore (1999) Seahra, S.S., Wesson, P.S.: Class. Quant. Grav. 20, 1321 (2003)Google Scholar
  8. 8.
    Randall, L., Sundrum, R.: Phys. Rev. Lett. 83, 4690 (1999); Arkani-Hamed, N., Dimopoulos, S., Dvali, G.R.: Phys. Rev. D 59, 086004 (1999)Google Scholar
  9. 9.
    Seahra, S.S.: Ph.D. Thesis, Un. Waterloo, Canada (2003); Seahra, S.S., Wesson, P.S.: J. Math. Phys. 44, 5664 (2003)Google Scholar
  10. 10.
    Pathria, R.K.: Nature 240, 298 (1972); Anderson, P.: Tau-Zero (Lancer, New York 1970; Orion, New York 2000)Google Scholar
  11. 11.
    Fukui, T., Seahra, S.S., Wesson, P.S.: J. Math. Phys. 42, 5195 (2001)CrossRefGoogle Scholar
  12. 12.
    West, P.: Introduction to Supersymmetry and Supergravity$ (World Scientific, Singapore 1986); Green, M.B., Schwarz, J.H., Witten, E.: Superstring Theory (Cambridge Univ. Press, Cambridge 1987)Google Scholar
  13. 13.
    Henriksen, R.N., Emslie, A.G., Wesson, P.S.: Phys. Rev. D 27, 1219 (1983); Wesson, P.S.: Phys. Rev. D 34, 3925 (1986)Google Scholar
  14. 14.
    Misner, C.W., Sharp, D.H.: Phys. Rev. 136, B571 (1964); Podurets, M.A.: Sov. Astron. (A.J.) 8, 19 (1964); Wesson, P.S., J. Math. Phys. 19, 2283 (1978)Google Scholar
  15. 15.
    Campbell, J.: A Course on Differential Geometry Claredon, Oxford (1926); Magaard, L.: Ph.D. thesis, Kiel (1963); Anderson, E., Lidsey, J.E.: Class. Quant. Grav. 18, 4831 (2001) [gr-qc/0106090]; Dahia, F., Romero, C.: (2001a) [gr-qc/0109076]; Anderson, E., Dahia, F., Lidsey, J.E., Romero, C.: (2001) [gr-qc/0111094]; Dahia, F., Romero, C.: (2001b) [gr-qc/0111058]Google Scholar
  16. 16.
    Anderson, E.: [gr-qc/0409122]Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institute of Cosmology & GravitationUniversity of PortsmouthPortsmouthGreat Britain
  2. 2.Department of PhysicsUniversity of WaterlooWaterlooCanada

Personalised recommendations