General Relativity and Gravitation

, Volume 37, Issue 8, pp 1339–1347 | Cite as

The universe as a five-dimensional black hole

  • Sanjeev S. SeahraEmail author
  • Paul S. Wesson
Research Article


We show the geometrical equivalence of two five-dimensional metrics, one describing a cosmology which smoothly embeds the standard Friedmann-Robertson-Walker-Lemaître models, and another describing an object which topologically is a black hole. The solutions can be interpreted using either membrane or induced-matter theory. We outline the main physics, wherein the horizon of the black hole is connected to a big bounce in the cosmology, which may in turn be connected to a phase change in the vacuum.


Induced-matter theory Black holes Phase changes Inflation Braneworld scenarios 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liu, H., Wesson, P.S.: Astrophys. J. 562, 1 (2001)CrossRefGoogle Scholar
  2. 2.
    Overduin, J.M., Cooperstock, F.I.: Phys. Rev. 58, 043506 (1998); Overduin, J.M.: Astrophys. J. 517, L1 (1999)Google Scholar
  3. 3.
    Linde, A.D.: Inflation and Quantum Cosmology (Academic, Boston, 1990); Vilenkin, A.: Phys. Lett. B 117, 25 (1982)CrossRefGoogle Scholar
  4. 4.
    Ponce de Leon, J.: Mod. Phys. Lett. A 16, 2291 (2001); Ponce de Leon, J.: Int. J. Mod. Phys D, 13, 1053 (2003); Ponce de Leon, J.: Mod. Phys. Lett. A 17, 2425 (2002); Lake, K.: (2001) [gr-qc/0105119]; Blinkowski, A.A.: In: Proc. 11th. Seminar on Nonlinear Phenomena in Complex Systems, 5 (Minsk, Belarus, 2002); Bruni, D.: M.Sc. Thesis, Un. Waterloo, Canada (2002); Liu, H.: Phys. Lett. B 560, 149 (2003); Xu, L.: Liu, H., Wang, B.: (2003) [gr-qc/0304049]Google Scholar
  5. 5.
    Ponce de Leon, J.: Gen. Rel. Grav. 20, 539 (1988)CrossRefGoogle Scholar
  6. 6.
    Abolghasem, G., Coley, A.D., McManus, D.J.: J. Math. Phys. 37, 361 (1996)CrossRefGoogle Scholar
  7. 7.
    Wesson, P.S.: Space-Time-Matter. World Scientific, Singapore (1999) Seahra, S.S., Wesson, P.S.: Class. Quant. Grav. 20, 1321 (2003)Google Scholar
  8. 8.
    Randall, L., Sundrum, R.: Phys. Rev. Lett. 83, 4690 (1999); Arkani-Hamed, N., Dimopoulos, S., Dvali, G.R.: Phys. Rev. D 59, 086004 (1999)Google Scholar
  9. 9.
    Seahra, S.S.: Ph.D. Thesis, Un. Waterloo, Canada (2003); Seahra, S.S., Wesson, P.S.: J. Math. Phys. 44, 5664 (2003)Google Scholar
  10. 10.
    Pathria, R.K.: Nature 240, 298 (1972); Anderson, P.: Tau-Zero (Lancer, New York 1970; Orion, New York 2000)Google Scholar
  11. 11.
    Fukui, T., Seahra, S.S., Wesson, P.S.: J. Math. Phys. 42, 5195 (2001)CrossRefGoogle Scholar
  12. 12.
    West, P.: Introduction to Supersymmetry and Supergravity$ (World Scientific, Singapore 1986); Green, M.B., Schwarz, J.H., Witten, E.: Superstring Theory (Cambridge Univ. Press, Cambridge 1987)Google Scholar
  13. 13.
    Henriksen, R.N., Emslie, A.G., Wesson, P.S.: Phys. Rev. D 27, 1219 (1983); Wesson, P.S.: Phys. Rev. D 34, 3925 (1986)Google Scholar
  14. 14.
    Misner, C.W., Sharp, D.H.: Phys. Rev. 136, B571 (1964); Podurets, M.A.: Sov. Astron. (A.J.) 8, 19 (1964); Wesson, P.S., J. Math. Phys. 19, 2283 (1978)Google Scholar
  15. 15.
    Campbell, J.: A Course on Differential Geometry Claredon, Oxford (1926); Magaard, L.: Ph.D. thesis, Kiel (1963); Anderson, E., Lidsey, J.E.: Class. Quant. Grav. 18, 4831 (2001) [gr-qc/0106090]; Dahia, F., Romero, C.: (2001a) [gr-qc/0109076]; Anderson, E., Dahia, F., Lidsey, J.E., Romero, C.: (2001) [gr-qc/0111094]; Dahia, F., Romero, C.: (2001b) [gr-qc/0111058]Google Scholar
  16. 16.
    Anderson, E.: [gr-qc/0409122]Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institute of Cosmology & GravitationUniversity of PortsmouthPortsmouthGreat Britain
  2. 2.Department of PhysicsUniversity of WaterlooWaterlooCanada

Personalised recommendations