General Relativity and Gravitation

, Volume 37, Issue 7, pp 1255–1262

(Anti-)de Sitter black hole thermodynamics and the generalized uncertainty principle

Research Article

Abstract

We extend the derivation of the Hawking temperature of a Schwarzschild black hole via the Heisenberg uncertainty principle to the de Sitter and anti-de Sitter spacetimes. The thermodynamics of the Schwarzschild-(anti-)de Sitter black holes is obtained from the generalized uncertainty principle of string theory and non-commutative geometry. This may explain why the thermodynamics of (anti-)de Sitter-like black holes admits a holographic description in terms of a dual quantum conformal field theory, whereas the thermodynamics of Schwarzschild-like black holes does not.

Keywords

Black hole de Sitter spacetime Uncertainty principle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975)Google Scholar
  2. 2.
    Adler, R.J., Chen, P., Santiago, D.I.: Gen. Rel. Grav. 33, 2101 (2001) [arXiv:gr-qc/0106080]Google Scholar
  3. 3.
    Novikov, I.D., Frolov, V.P.: Physics of Black Holes, Fundamental theories of physics 27, Kluwer Academic, Dordrecht, Netherlands (1989)Google Scholar
  4. 4.
    Visser, M.: Int. J. Mod. Phys. D 12, 649 (2003) [arXiv:hep-th/0106111]Google Scholar
  5. 5.
    Cadoni, M.: Phys. Rev. D 69, 084021 (2004) [arXiv:gr-qc/0311056]Google Scholar
  6. 6.
    Cai, R.G.: Phys. Lett. B 525, 331 (2002) [arXiv:hep-th/0111093]Google Scholar
  7. 7.
    Chen, P., Adler, R.J.: Nucl. Phys. Proc. Suppl. 124, 103 (2003) [arXiv:gr-qc/0205106]; Cavaglià, M., Das, S., Maartens, R.: Class. Quant. Grav. 20, L205 (2003) [arXiv:hep-ph/0305223]; Cavaglià, M., Das, S.: Class. Quant. Grav. 21, 4511 (2004) [arXiv:hep-th/0404050]; Hossenfelder, S., Bleicher, M., Hofmann, S., Ruppert, J., Scherer, S., Stocker, H.: Phys. Lett. B 575, 85 (2003) [arXiv:hep-th/0305262]Google Scholar
  8. 8.
    Maggiore, M.: Phys. Rev. D 49, 5182 (1994) [arXiv:hep-th/9305163]; Maggiore, M.: Phys. Lett. B 319, 83 (1993) [arXiv:hep-th/9309034]Google Scholar
  9. 9.
    Maggiore, M.: Phys. Lett. B 304, 65 (1993) [arXiv:hep-th/9301067]; Scardigli, F.: Phys. Lett. B 452, 39 (1999) [arXiv:hep-th/9904025]; Scardigli, F., Casadio, R.: Class. Quant. Grav. 20, 3915 (2003) [arXiv:hep-th/0307174]Google Scholar
  10. 10.
    Amati, D., Ciafaloni, M., Veneziano, G.: Phys. Lett. B 216, 41 (1989); Amati, D., Ciafaloni, M., Veneziano, G.: Nucl. Phys. B 347, 550 (1990); Amati, D., Ciafaloni, M., Veneziano, G.: Nucl. Phys. B 403, 707 (1993).Google Scholar
  11. 11.
    Konishi, K., Paffuti, G., Provero, P.: Phys. Lett. B 234, 276 (1990).Google Scholar
  12. 12.
    Setare, M.R.: Phys. Rev. D 70, 087501 (2004) [arXiv:hep-th/0410044]; Camacho, A.: Gen. Rel. Grav. 34, 1839 (2002) [arXiv:gr-qc/0206006]; Shalyt-Margolin, A.E., Tregubovich, A.Y.: Mod. Phys. Lett. A 19, 71 (2004) [arXiv:hep-th/0311034]; Kalyana Rama, S.: Phys. Lett. B 519, 103 (2001) [arXiv:hep-th/0107255]; Hassan, S.F., Sloth, M.S.: Nucl. Phys. B 674, 434 (2003) [arXiv:hep-th/0204110]Google Scholar
  13. 13.
    Kempf, A.: J. Math. Phys. 35, 4483 (1994) [arXiv:hep-th/9311147]; Kempf, A.: arXiv:hep-th/9405067; Kempf, A.: J. Math. Phys. 38, 1347 (1997) [arXiv:hep-th/9602085]; Hinrichsen, H., Kempf, A.: J. Math. Phys. 37, 2121 (1996) [arXiv:hep-th/9510144]Google Scholar
  14. 14.
    Banados, M., Teitelboim, C., Zanelli, J.: Phys. Rev. Lett. 69, 1849 (1992) [arXiv:hep-th/9204099].Google Scholar
  15. 15.
    Cadoni, M., Carta, P.: [arXiv:hep-th/0211018]Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of Mississippi UniversityU.S.A.

Personalised recommendations