Advertisement

General Relativity and Gravitation

, Volume 37, Issue 5, pp 907–936 | Cite as

Dynamics of the universe with global rotation

  • Marek Szydłowski
  • Włodzimierz Godłowski
Article

Abstract

We analyze the dynamics of the FRW models with global rotation in terms of dynamical system methods. We reduce the dynamics of these models to the FRW models with some fictitious fluid which scales like radiation matter. This fluid mimics dynamical effects of global rotation. The significance of the global rotation of the Universe for the resolution of the acceleration and horizon problems in cosmology is investigated. It is found that the dynamics of the Universe can be reduced to the two-dimensional Hamiltonian dynamical system. Then the construction of the Hamiltonian allows for full classification of evolution paths. On the phase portraits we find the domains of cosmic acceleration for the globally rotating universe as well as the trajectories for which the horizon problem is solved. We show that the FRW models with global rotation are structurally stable. This proves that the universe acceleration is due to the global rotation. It is also shown how global rotation gives a natural explanation of the empirical relation between angular momentum for clusters and superclusters of galaxies. The relation J ~ M2 is obtained as a consequence of self similarity invariance of the dynamics of the FRW model with global rotation. In derivation of this relation we use the Lie group of symmetry analysis of differential equation.

Keywords

Universe Rotation Dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Obukhov, Y. N., Chrobok, T., Scherfner, M.: Phys. Rev. D. 66, 043518 (2002)CrossRefGoogle Scholar
  2. 2.
    Lanczos, K.: Z. Phys. 21, 73 (1924); English translation see Gen. Rel. Grav. 29, 363 (1997)Google Scholar
  3. 3.
    Gamov, G.: Nature 158, 549 (1946)Google Scholar
  4. 4.
    Goedel, K.: Rev. Mod. Phys. 21, 447 (1949); reprint see Gen. Rel. Grav. 32, 1409 (2000)Google Scholar
  5. 5.
    Hawking, S.W.: Mon. Not. R. Astr. Soc. 142, 129 (1969)Google Scholar
  6. 6.
    Collins, C.B., Hawking, S.W.: Mon. Not. R. Astr. Soc. 162, 307 (1973)Google Scholar
  7. 7.
    Barrow, J.D., Juszkiewicz, R., Sonoda, D.: Mon. Not. R. Astr. Soc. 213, 917 (1985)Google Scholar
  8. 8.
    Bunn, E.F., Ferreira, P., Silk, J.: Phys. Rev. Lett. 77, 2883 (1996)CrossRefPubMedGoogle Scholar
  9. 9.
    Kogut, A., Hinshaw, G., Banday, A.: Phys. Rev. D 55, 1901 (1997)CrossRefGoogle Scholar
  10. 10.
    Heckmann, O., Schücking, E.: Handbuch der Physik. In: Flügge, S. (ed.) Springer-Verlag, Berlin, Vol. LIII, 489 (1959)Google Scholar
  11. 11.
    Heckmann, O.: Astron. J. 66, 205 (1961)CrossRefGoogle Scholar
  12. 12.
    Szekeres, P., Rankin, R.: Australian Math. Soc. B 20, 114 (1977)Google Scholar
  13. 13.
    Senovilla, J.M.M., Sopuerta, C.F., Szekeres, P.: Gen. Rel. Grav. 30, 389 (1998)CrossRefGoogle Scholar
  14. 14.
    Godlowski, W., Szydlowski, M., Flin, P., Biernacka, M.: Gen. Rel. Grav. 35, 907 (2003)CrossRefMathSciNetGoogle Scholar
  15. 15.
    King, A.R., Ellis, G.F.R.: Commun. Math. Phys. 31, 209 (1973)CrossRefGoogle Scholar
  16. 16.
    Raychaudhuri, A.K.: Theoretical Cosmology. Clarendon Press, Oxford (1979)Google Scholar
  17. 17.
    Ellis, G.F.R.: Cargèse Lectures in Physics. In: Schatzman, E. (ed.) Gordon and Breach New York, Vol. 6 (1973)Google Scholar
  18. 18.
    Li, L.-X.: Gen. Rel. Grav. 30, 497 (1998)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Barrow, J.D., Tsagas, C.G.: Class. Quant. Grav. 21, 1773 (2004)CrossRefGoogle Scholar
  20. 20.
    Silk, J.: Mon. Not. R. Astr. Soc. 147, 13 (1970)Google Scholar
  21. 21.
    Birch, P.: Nature 298, 451 (1982)CrossRefGoogle Scholar
  22. 22.
    Phinney, E.S., Webster, R.L.: Nature 301, 735 (1983)CrossRefGoogle Scholar
  23. 23.
    Bietenholz, M.F., Kronberg, P.P.: Astroph. J. 287, L1 (1984)CrossRefGoogle Scholar
  24. 24.
    Fil’chenkov, M.L.: Frontiers of Particle Physics. In: Studenikin, A. (ed.) World Scientific, Singapore, 284 (2003)Google Scholar
  25. 25.
    Djorgovski, A.: Nearly Normal Galaxies. In: Faber, S.M. (ed.) Springer Verlag, New York, 227 (1987)Google Scholar
  26. 26.
    Flin, P., Godlowski, W.: Mon. Not. R. Astr. Soc. 222, 525 (1986)Google Scholar
  27. 27.
    Kashikawa, N., Okamura, S.: PASJ 44, 493 (1992)Google Scholar
  28. 28.
    Godlowski, W.: Mon. Not. R. Astr. Soc. 265, 874 (1993)Google Scholar
  29. 29.
    Godlowski, W.: Mon. Not. R. Astr. Soc. 271, 19 (1994)Google Scholar
  30. 30.
    Perlmutter, S. et al.: Nature 391, 51 (1998)CrossRefGoogle Scholar
  31. 31.
    Perlmutter, S. et al.: Astroph. J. 517, 565 (1999)CrossRefGoogle Scholar
  32. 32.
    Garnavich, P.M. et al.: Astroph. J. Lett. 493, L53 (1998)CrossRefGoogle Scholar
  33. 33.
    Riess, A.G. et al.: Astron. J. 116, 1009 (1998)CrossRefGoogle Scholar
  34. 34.
    Godlowski, W., Szydlowski, M.: Gen. Rel. Grav. 35, 2171 (2003)CrossRefMathSciNetGoogle Scholar
  35. 35.
    Ciufolini, I., Wheeler, J.A.: Gravitation and Inertia. Princeton University Press, Princeton (1995)Google Scholar
  36. 36.
    Dabrowski, M., Stelmach, J.: Astron. J. 92, 1272 (1986)CrossRefGoogle Scholar
  37. 37.
    Robertson, H.P.: Rev. Mod. Phys. 5, 62 (1933)CrossRefGoogle Scholar
  38. 38.
    Dabrowski, M.: Ann. Phys. (N.Y) 248, 199 (1996)CrossRefGoogle Scholar
  39. 39.
    Weinberg, S.: Gravitation and Cosmology. Wiley, New York (1972)Google Scholar
  40. 40.
    Peebles, P.J.E., Ratra, B.: Rev. Mod. Phys. 75, 559 (2003)CrossRefGoogle Scholar
  41. 41.
    Godlowski, W., Szydlowski, M.: Gen. Rel. Grav. 36, 767 (2004)CrossRefGoogle Scholar
  42. 42.
    Barrow, J.D.: Phys. Rev. D 59, 043515 (1999)CrossRefGoogle Scholar
  43. 43.
    Wesson, P.S.: Astron. Astroph. 80, 269 (1979)Google Scholar
  44. 44.
    Wesson, P.S.: Astron. Astroph. 119, 313 (1983)Google Scholar
  45. 45.
    Barenblatt, G.I.: Scaling, Self-similarity, and Intermediate Asymptotes. Cambridge University Press, New York (1996)Google Scholar
  46. 46.
    Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Springer-Verlag, New York (1989)Google Scholar
  47. 47.
    Stephani, H.: Differential Equations, Their Solution Using Symmetries. Cambridge University Press, New York (1989)Google Scholar
  48. 48.
    Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982)Google Scholar
  49. 49.
    Kippenhahn, R.: Stellar Structure and Evolution. Springer-Verlag, Berlin (1980)Google Scholar
  50. 50.
    Collins, C.B.: J. Math. Phys. 18, 134 (1977)Google Scholar
  51. 51.
    Biesiada, M., Golda, Z., Szydlowski, M.: J. Phys. A 20, 1313 (1988)Google Scholar
  52. 52.
    Biesiada, M., Szydlowski, M.: J. Phys. A 21, 3409 (1988)Google Scholar
  53. 53.
    Rudzki, A.: Bull. Astroph. 19 134 (1902)Google Scholar
  54. 54.
    Ellis, G.F.R., Van Helst, H.: Theoretical and Observational Cosmology. In: Marc Lachièze-Rey (ed.) NATO Science Series Vol. 541 (1998)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Astronomical ObservatoryJagiellonian UniversityKrakówPoland

Personalised recommendations