Advertisement

Modelling by Spherical Cap Harmonic Analysis: A Literature Review

  • J. Miquel TortaEmail author
Article
  • 15 Downloads

Abstract

There is the need for robust alternatives to the widely used spherical harmonic analysis when measurements are restricted to a region, or when high spatial frequency fields with much less parameters are required. Spherical cap harmonic analysis (SCHA) is one of the preferred alternative regional modelling techniques over the last decades. This paper presents a comprehensive and systematic review of the SCHA literature, underlining the respective merits and weaknesses of the ways in which the technique has been used since it was proposed in the context of geomagnetic field modelling. It reflects the multidisciplinary use of this technique and examines the evidences presented mainly in Earth and planetary science journals. Some bibliometric parameters are provided to understand how the technique and the knowledge of its limitations have progressed and improved, and some avenues for future research are highlighted.

Keywords

Spherical cap harmonic analysis SCHA Geomagnetism Modelling 

Notes

Acknowledgements

The author is very grateful to Luis R. Gaya-Piqué for his very thorough review of the present paper, to Santiago Marsal for some interesting suggestions, and to Fco. Javier Pavón-Carrasco for some of his figures. He wishes to acknowledge Erwan Thébault and an anonymous reviewer for their valuable comments and constructive criticisms that enhanced the quality of the manuscript. This research has been supported by Spanish Project CGL2017-82169-C2-1-R funded by Ministerio de Ciencia, Innovación y Universidades.

References

  1. Al-Fanek OJS (2013) Ionospheric imaging for Canadian polar regions. University of Calgary, CalgaryGoogle Scholar
  2. Allain JM, Ben Amar M (2004) Biphasic vesicle: instability induced by adsorption of proteins. Phys A Stat Mech Appl 337:531–545.  https://doi.org/10.1016/j.physa.2003.12.058 CrossRefGoogle Scholar
  3. Amm O, Viljanen A (1999) Ionospheric disturbance magnetic field continuation from the ground to the ionosphere using spherical elementary current systems. Earth Planets Space 51:431–440CrossRefGoogle Scholar
  4. An Z, Kerridge DJ, Tan D et al (1992) A spherical cap harmonic model of the satellite magnetic anomaly field over China and adjacent areas. J Geomagn Geoelectr 44:243–252.  https://doi.org/10.5636/jgg.44.243 CrossRefGoogle Scholar
  5. An Z, Tan D, Xu Y et al (1994) Spherical cap harmonic analysis of the geomagnetic field over East Asia. J Geomagn Geoelectr 46:789–795.  https://doi.org/10.5636/jgg.46.789 CrossRefGoogle Scholar
  6. An Z, Tan D, Wang Y et al (1997) Harmonic analysis of the anomalous magnetic field over the asian area derived from the MAGSAT satellite data. Geomagn Aeron 37:624–627Google Scholar
  7. De Santis A (1991) Translated origin spherical cap harmonic analysis. Geophys J Int 106:253–263.  https://doi.org/10.1111/j.1365-246X.1991.tb04615.x CrossRefGoogle Scholar
  8. De Santis A (1992) Conventional spherical harmonic analysis for regional modelling of the geomagnetic field. Geophys Res Lett 19:1065–1067CrossRefGoogle Scholar
  9. De Santis A, Falcone C (1995) Spherical cap models of Laplacian potentials and general fields. In: Sansò F (ed) Geodetic theory today. Springer, Berlin, pp 141–150CrossRefGoogle Scholar
  10. De Santis A, Torta JM (1997) Spherical cap harmonic analysis: a comment on its proper use for local gravity field representation. J Geod 71:526–532.  https://doi.org/10.1007/s001900050120 CrossRefGoogle Scholar
  11. De Santis A, Kerridge DJ, Barraclough DR (1989) A spherical cap harmonic model of the crustal magnetic anomaly field in Europe observed by MAGSAT. In: Lowes FJ, Collinson DW, Parry JH et al (eds) Geomagnetism and palaeomagnetism. Springer, Dordrecht, pp 1–17Google Scholar
  12. De Santis A, Batelli O, Kerridge DJ (1990) Spherical cap harmonic analysis applied to regional field modelling for Italy. J Geomagn Geoelectr 42:1019–1036.  https://doi.org/10.5636/jgg.42.1019 CrossRefGoogle Scholar
  13. De Santis A, De Franceschi G, Zolesi B et al (1991) Regional mapping of the critical frequency of the F2 layer by spherical cap harmonic expansion. Ann Geophys 9:401–406Google Scholar
  14. De Santis A, De Franceschi G, Zolesi B, Cander UR (1992) Regional modelling and mapping of the ionospheric characteristic parameters by spherical harmonic expansion. Adv Space Res 12:279–282CrossRefGoogle Scholar
  15. De Santis A, De Franceschi G, Kerridge DJ (1994) Regional spherical modeling of 2-D functions: the case of the critical frequency of the F2 ionospheric layer. Comput Geosci 20:849–871.  https://doi.org/10.1016/0098-3004(94)90117-1 CrossRefGoogle Scholar
  16. De Santis A, Falcone C, Torta JM (1996) Simple additional constraints on regional models of the geomagnetic secular variation field. Phys Earth Planet Inter 97:15–21CrossRefGoogle Scholar
  17. De Santis A, Falcone C, Torta JM (1997a) SHA vs. SCHA for modelling secular variation in a small region such as Italy. J Geomagn Geoelectr 49:359–371CrossRefGoogle Scholar
  18. De Santis A, Chiappini M, Dominici G, Meloni A (1997b) Regional geomagnetic field modelling: the contribution of the Istituto Nazionale di Geofisica. Ann Geophys.  https://doi.org/10.4401/ag-3854 CrossRefGoogle Scholar
  19. De Santis A, Torta JM, Lowes FJ (1999) Spherical cap harmonics revisited and their relationship to ordinary spherical harmonics. Phys Chem Earth A Solid Earth Geod 24:935–941.  https://doi.org/10.1016/S1464-1895(99)00138-6 CrossRefGoogle Scholar
  20. De Santis A, Torta JM, Gaya-Piqué LR (2002) The first antarctic geomagnetic reference model (ARM). Geophys Res Lett 29:33-1–33-4.  https://doi.org/10.1029/2002gl014675 CrossRefGoogle Scholar
  21. Dremukhina LA, Levitin AE, Papitashvili VO (1998) Analytical representation of izmem model for near-real time prediction of electromagnetic weather. J Atmos Solar-Terres Phys 60(15):1517–1529CrossRefGoogle Scholar
  22. Duka B (1998) Comparison of different methods of analysis of satellite geomagnetic anomalies over Italy. Ann Geophys.  https://doi.org/10.4401/ag-3793 CrossRefGoogle Scholar
  23. Duka B, De Santis A, Gaya-Piqué LR (2006) On the modelling of a geomagnetic reference field for the Balkan region. In: Rasson JL, Delipetrov T (eds) Geomagnetics for aeronautical safety: a case study in and around the Balkans. Springer, Berlin, pp 83–95CrossRefGoogle Scholar
  24. Duka B, Gaya-Piqué LR, De Santis A et al (2004) A geomagnetic reference model for Albania, Southern Italy and the Ionian Sea from 1990 to 2005. Ann Geophys.  https://doi.org/10.4401/ag-3363 CrossRefGoogle Scholar
  25. Düzgit Z, Malin SRC (2000) Assessment of regional geomagnetic field modelling methods using a standard data set: spherical cap harmonic analysis. Geophys J Int 141:829–831.  https://doi.org/10.1046/j.1365-246X.2000.00099.x CrossRefGoogle Scholar
  26. Edwards TR, Weimer DR, Tobiska WK, Olsen N (2017) Field-aligned current response to solar indices. J Geophys Res Space Phys 122:5798–5815.  https://doi.org/10.1002/2016JA023563 CrossRefGoogle Scholar
  27. Feng Y, Jiang Y, Jiang Y et al (2016) Spherical cap harmonic analysis of regional magnetic anomalies based on CHAMP satellite data. Appl Geophys 13:561–569.  https://doi.org/10.1007/s11770-016-0567-8 CrossRefGoogle Scholar
  28. Feng Y, Sun H, Jiang Y et al (2017) Joint establishment of the geomagnetic model for mainland China based on CHAMP satellite and surface vector data. Chin J Geophys 60:2522–2533Google Scholar
  29. Fiori RAD (2011) Application of spherical cap harmonic analysis to plasma convection mapping at high latitudes. The University of Saskatchewan (Canada), SaskatoonGoogle Scholar
  30. Fiori RAD, Boteler DH, Koustov AV et al (2010) Spherical cap harmonic analysis of super dual auroral radar network (SuperDARN) observations for generating maps of ionospheric convection. J Geophys Res Space Phys.  https://doi.org/10.1029/2009JA015055 CrossRefGoogle Scholar
  31. Fiori RAD, Boteler DH, Knudsen D et al (2013) Potential impact of Swarm electric field data on global 2D convection mapping in combination with SuperDARN radar data. J Atmos Solar Terr Phys 93:87–99.  https://doi.org/10.1016/J.JASTP.2012.11.013 CrossRefGoogle Scholar
  32. Fiori RAD, Boteler DH, Koustov AV et al (2014) Investigation of localized 2D convection mapping based on artificially generated Swarm ion drift data. J Atmos Solar-Terr Phys 114:30–41.  https://doi.org/10.1016/j.jastp.2014.04.004 CrossRefGoogle Scholar
  33. Förster M, Feldstein YI, Haaland SE et al (2009) Magnetospheric convection from Cluster EDI measurements compared with the ground-based ionospheric convection model IZMEM. Ann Geophys 27:3077–3087.  https://doi.org/10.5194/angeo-27-3077-2009 CrossRefGoogle Scholar
  34. Förster M, Feldstein YI, Gromova LI et al (2013) Some aspects of modelling the high-latitude ionospheric convection from Cluster/Edi data. Geomagn Aeron 53:85–95.  https://doi.org/10.1134/s001679321301009x CrossRefGoogle Scholar
  35. Garcia A, Torta JM, Curto JJ, Sanclement E (1991) Geomagnetic secular variation over Spain 1970–1988 by means of spherical cap harmonic analysis. Phys Earth Planet Inter 68:65–75.  https://doi.org/10.1016/0031-9201(91)90008-6 CrossRefGoogle Scholar
  36. Gaya-Piqué LR (2004) Analysis of the geomagnetic field in Antarctica from near-surface and satellite data. Universitat Ramon Llull, BarcelonaGoogle Scholar
  37. Gaya-Piqué LR, De Santis A, Torta JM (2005) Use of champ magnetic data to improve the antarctic geomagnetic reference model. In: Reigber C, Lühr H, Schwintzer P, Wickert J (eds) Earth observation with CHAMP: results from three years in orbit. Springer, Berlin, pp 317–322CrossRefGoogle Scholar
  38. Gaya-Piqué LR, Ravat D, De Santis A, Torta JM (2006) New model alternatives for improving the representation of the core magnetic field of Antarctica. Antarct Sci 18:101.  https://doi.org/10.1017/S0954102006000095 CrossRefGoogle Scholar
  39. Gaya-Piqué LR, Curto JJ, Torta JM, Chulliat A (2008) Equivalent ionospheric currents for the 5 December 2006 solar flare effect determined from spherical cap harmonic analysis. J Geophys Res Space Phys.  https://doi.org/10.1029/2007JA012934 CrossRefGoogle Scholar
  40. Ghoddousi-Fard R, Héroux P, Danskin D, Boteler D (2011) Developing a GPS TEC mapping service over Canada. Space Weather.  https://doi.org/10.1029/2010SW000621 CrossRefGoogle Scholar
  41. Green DL, Waters CL, Anderson BJ et al (2006) Comparison of large-scale Birkeland currents determined from Iridium and SuperDARN data. Ann Geophys 24:941–959.  https://doi.org/10.5194/angeo-24-941-2006 CrossRefGoogle Scholar
  42. Green DL, Waters CL, Korth H et al (2007) Technique: large-scale ionospheric conductance estimated from combined satellite and ground-based electromagnetic data. J Geophys Res Space Phys 112:1–10.  https://doi.org/10.1029/2006JA012069 CrossRefGoogle Scholar
  43. Gu Z, Zhan Z, Gao J et al (2006) Geomagnetic survey and geomagnetic model research in China. Earth Planets Space 58:741–750CrossRefGoogle Scholar
  44. Guo J, Wang S, Li G et al (2012) Local Quasi-Geoid refinement based on spherical cap harmonic model. Appl Mech Mater 226–228:1947–1950.  https://doi.org/10.4028/www.scientific.net/amm.226-228.1947 CrossRefGoogle Scholar
  45. Haines GV (1985a) Spherical cap harmonic analysis. J Geophys Res 90:2583–2591.  https://doi.org/10.1029/JB090iB03p02583 CrossRefGoogle Scholar
  46. Haines GV (1985b) Magsat vertical field anomalies above 40°N from spherical cap harmonic analysis. J Geophys Res 90:2593–2598.  https://doi.org/10.1029/JB090iB03p02593 CrossRefGoogle Scholar
  47. Haines GV (1985c) Spherical cap harmonic analysis of geomagnetic secular variation over Canada 1960–1983. J Geophys Res 90:12563–12574.  https://doi.org/10.1029/jb090ib14p12563 CrossRefGoogle Scholar
  48. Haines GV (1987) Modelling the geomagnetic field by the method of spherical cap harmonic analysis. HHI Rep 21:27–34Google Scholar
  49. Haines GV (1988) Computer programs for spherical cap harmonic analysis of potential and general fields. Comput Geosci 14:413–447.  https://doi.org/10.1016/0098-3004(88)90027-1 CrossRefGoogle Scholar
  50. Haines GV (1990) Regional magnetic field modelling: a review. J Geomagn Geoelectr 42:1001–1018.  https://doi.org/10.5636/jgg.42.1001 CrossRefGoogle Scholar
  51. Haines GV (1991) Power spectra of sub-periodic functions. Phys Earth Planet Inter 65:231–247CrossRefGoogle Scholar
  52. Haines GV (1993) Modelling geomagnetic secular variation by main-field differences. Geophys J Int 114:490–500.  https://doi.org/10.1111/j.1365-246X.1993.tb06982.x CrossRefGoogle Scholar
  53. Haines GV, Fiori RAD (2013) Modeling by singular value decomposition and the elimination of statistically insignificant coefficients. Comput Geosci 58:19–28.  https://doi.org/10.1016/j.cageo.2013.04.021 CrossRefGoogle Scholar
  54. Haines GV, Newitt LR (1986) Canadian geomagnetic reference field 1985. J Geomagn Geoelectr 38:895–921.  https://doi.org/10.5636/jgg.38.895 CrossRefGoogle Scholar
  55. Haines GV, Newitt LR (1997) The Canadian geomagnetic reference field 1995. J Geomagn Geoelectr 49:317–336.  https://doi.org/10.5636/jgg.49.317 CrossRefGoogle Scholar
  56. Haines GV, Torta JM (1994) Determination of equivalent current sources from spherical cap harmonic models of geomagnetic field variations. Geophys J Int 118:499–514.  https://doi.org/10.1111/j.1365-246X.1994.tb03981.x CrossRefGoogle Scholar
  57. Hwang C, Chen S (1997) Fully normalized spherical cap harmonics: application to the analysis of sea-level data from TOPEX/POSEIDON and ERS-1. Geophys J Int 129:450–460CrossRefGoogle Scholar
  58. Hwang JS, Han HC, Han SC et al (2012) Gravity and geoid model in South Korea and its vicinity by spherical cap harmonic analysis. J Geodyn 53:27–33.  https://doi.org/10.1016/j.jog.2011.08.001 CrossRefGoogle Scholar
  59. Ji X, Utsugi M, Shirai H et al (2006) Modelling of spatial-temporal changes of the geomagnetic field in Japan. Earth Planets Space 58:757–763.  https://doi.org/10.1186/BF03351979 CrossRefGoogle Scholar
  60. Kharshiladze AF, Ivanov KG (2013) Sector spherical harmonic analysis of the solar magnetic field. Geomagn Aeron 53:1–4.  https://doi.org/10.1134/s0016793213010106 CrossRefGoogle Scholar
  61. Kim HR, Gaya-Piqué LR, von Frese RRB et al (2005) CHAMP magnetic anomalies of the antarctic crust. In: Reigber C, Lühr H, Schwintzer P, Wickert J (eds) Earth observation with CHAMP: results from three years in orbit. Springer, Berlin, pp 261–266CrossRefGoogle Scholar
  62. Kim JW, Kim HR, von Frese R et al (2013) Geopotential field anomaly continuation with multi-altitude observations. Tectonophysics 585:34–47.  https://doi.org/10.1016/j.tecto.2012.07.016 CrossRefGoogle Scholar
  63. Korte M, Haak V (2000) Modeling European magnetic repeat station and survey data by SCHA in search of time-varying anomalies. Phys Earth Planet Inter 122:205–220.  https://doi.org/10.1016/S0031-9201(00)00194-1 CrossRefGoogle Scholar
  64. Korte M, Holme R (2003) Regularization of spherical cap harmonics. Geophys J Int 153:253–262.  https://doi.org/10.1046/j.1365-246X.2003.01898.x CrossRefGoogle Scholar
  65. Korte M, Thébault E (2007) Geomagnetic repeat station crustal biases and vectorial anomaly maps for Germany. Geophys J Int 170:81–92.  https://doi.org/10.1111/j.1365-246X.2007.03387.x CrossRefGoogle Scholar
  66. Kotzé PB (2001) Spherical cap modelling of Ørsted magnetic field vectors over southern Africa. Earth Planets Space 53:357–361.  https://doi.org/10.1186/bf03352392 CrossRefGoogle Scholar
  67. Kotzé PB (2002) Modelling and analysis of Ørsted total field data over Southern Africa. Geophys Res Lett 29:1.  https://doi.org/10.1029/2001GL013868 CrossRefGoogle Scholar
  68. Kotzé PB (2003a) Southern Africa’s geomagnetic secular variation. S Afr J Sci 99:584–587Google Scholar
  69. Kotzé PB (2003b) The time-varying geomagnetic field of Southern Africa Southern Africa. Earth Planets Sp 55:111–116CrossRefGoogle Scholar
  70. Kotzé PB (2014) Modelling and analysis of Southern African geomagnetic field observations: 1840 until 1903. S Afr J Geol 117:211–218.  https://doi.org/10.2113/gssajg.117.2.211 CrossRefGoogle Scholar
  71. Kotzé PB, Barraclough DR (1997) Modelling and analysis of POGS data over southern africa by spherical cap harmonic analysis. J Geomagn Geoelectr 49:441–452.  https://doi.org/10.5636/jgg.49.441 CrossRefGoogle Scholar
  72. Koustov AV, Fiori RAD (2016) Seasonal and solar cycle variations in the ionospheric convection reversal boundary location inferred from monthly SuperDARN data sets. Ann Geophys 34:227–239.  https://doi.org/10.5194/angeo-34-227-2016 CrossRefGoogle Scholar
  73. Langlais B, Thébault E (2011) Predicted and observed magnetic signatures of martian (de)magnetized impact craters. Icarus 212:568–578.  https://doi.org/10.1016/j.icarus.2011.01.015 CrossRefGoogle Scholar
  74. Lazo B, Calzadilla A, Alazo K et al (2004) Regional mapping of F2 peak plasma frequency by spherical harmonic expansion. Adv Space Res 33:880–883.  https://doi.org/10.1016/j.asr.2003.03.023 CrossRefGoogle Scholar
  75. Li J, Chao D, Ning J (1995) Spherical cap harmonic expansion for local gravity field representation. Manuscripta Geod 20:265–277Google Scholar
  76. Liu J, Chen R, Kuusniemi H et al (2010) A preliminary study on mapping the regional ionospheric TEC using a spherical cap harmonic model in high latitudes and the Arctic region. J Glob Position Syst 9:22–32.  https://doi.org/10.5081/jgps.9.1.22 CrossRefGoogle Scholar
  77. Liu J, Chen R, Wang Z, Zhang H (2011) Spherical cap harmonic model for mapping and predicting regional TEC. GPS Solut 15:109–119.  https://doi.org/10.1007/s10291-010-0174-8 CrossRefGoogle Scholar
  78. Liu J, Chen R, An J et al (2014a) Spherical cap harmonic analysis of the Arctic ionospheric TEC for one solar cycle. J Geophys Res Space Phys 119:601–619.  https://doi.org/10.1002/2013JA019501 CrossRefGoogle Scholar
  79. Liu J, Chen R, Wang Z et al (2014b) Long-term prediction of the Arctic ionospheric TEC based on time-varying periodograms. PLoS ONE 9:1–9.  https://doi.org/10.1371/journal.pone.0111497 CrossRefGoogle Scholar
  80. Lowes FJ (1999) Orthogonality and mean squares of the vector fields given by spherical cap harmonic potentials. Geophys J Int 136:781–783.  https://doi.org/10.1046/j.1365-246X.1999.00739.x CrossRefGoogle Scholar
  81. Miranda JMA, Pais MA, Abreu IP (1997) Calculation of detailed component maps combining SCHA and digital filtering. J Geomagn Geoelectr 49:373–386.  https://doi.org/10.5636/jgg.49.373 CrossRefGoogle Scholar
  82. Moon Y, Skone S (2004) Evaluation of ionospheric interpolation algorithms for regional and national GPS networks in Canada. In: Proceedings of the 2004 national technical meeting of the institute of navigation. San Diego, CA, pp 761–770Google Scholar
  83. Morozova K, Jaeger R, Balodis J, Kaminskis J (2017) Software development and its description for Geoid determination based on spherical-cap-harmonics modelling using digital-zenith camera and gravimetric measurements hybrid data. IOP Conf Ser Mater Sci Eng 251:012065.  https://doi.org/10.1088/1757-899X/251/1/012065 CrossRefGoogle Scholar
  84. Nahayo E, Kotzé PB, Alport MJ (2011) An investigation into the use of satellite data to develop a geomagnetic secular variation model over Southern Africa. Data Sci J 10:IAGA64–IAGA68.  https://doi.org/10.2481/dsj.iaga-11 CrossRefGoogle Scholar
  85. Nahayo E, Kotzé PB, Webb SJ (2019) Application of spherical cap harmonic analysis on CHAMP satellite data to develop a lithospheric magnetic field model over southern Africa at satellite altitude. S Afr J Geol.  https://doi.org/10.25131/sajg.122.0012 CrossRefGoogle Scholar
  86. Nevanlinna H, Rynö J, Haines GV, Borg K (1988) Spherical cap harmonic analysis applied to the Scandinavian geomagnetic field 1985.0. Dtsch Hydrogr Zeitschrift 41:177–186.  https://doi.org/10.1007/BF02225927 CrossRefGoogle Scholar
  87. Newitt LR (2002) The optimum spacing between magnetic repeat stations for regional modelling. In: Proceedings of the Xth workshop on geomagnetic observatory instruments, data acquisition and processing, Hermanus, South Africa. pp 213–223Google Scholar
  88. Newitt LR, Barton CE (1996) The position of the north magnetic dip pole in 1994. J Geomagn Geoelectr 48:221–232CrossRefGoogle Scholar
  89. Newitt LR, Haines GV (1989) A Canadian geomagnetic reference field for epoch 1987.5. J Geomagn Geoelectr 41:249–260.  https://doi.org/10.5636/jgg.41.249 CrossRefGoogle Scholar
  90. Newitt LR, Haines GV (1991) The canadian geomagnetic reference field 1990. Curr Res E, Geol Surv Canada, Pap 91(1E):275–281Google Scholar
  91. Newitt LR, Niblett ER (1986) Relocation of the north magnetic dip pole. Can J Earth Sci 23:1062–1067CrossRefGoogle Scholar
  92. Newitt LR, Walker JK (1990) Removing magnetic activity from high latitude magnetic repeat station observations. J Geomagn Geoelectr 42:937–949.  https://doi.org/10.5636/jgg.42.937 CrossRefGoogle Scholar
  93. Newitt LR, Mandea M, McKee LA, Orgeval J-J (2002) Recent acceleration of the north magnetic pole linked to magnetic jerks. EOS Trans Am Geophys Union 83:381–389.  https://doi.org/10.1029/2002EO000276 CrossRefGoogle Scholar
  94. Newitt LR, Chulliat A, Orgeval JJ (2009) Location of the north magnetic pole in April 2007. Earth Planets Space 61:703–710CrossRefGoogle Scholar
  95. Ohashi M, Hattori T, Kubo Y, Sugimoto S (2013a) Multi-layer ionospheric VTEC estimation for GNSS positioning. In: 43rd ISC international symposium on stochastic systems theory and its applications—III, vol 26, pp 16–24Google Scholar
  96. Ohashi M, Nishimoto K, Kubo Y, Sugimoto S (2013b) Prediction of regional ionospheric models with AR model for GNSS positioning in Japan. Trans Inst Syst Control Inf Eng 26:425–432.  https://doi.org/10.5687/iscie.26.425 CrossRefGoogle Scholar
  97. Ohashi M, Nishimoto K, Kubo Y, Sugimoto S (2014) Regional ionospheric VTEC estimation applied by spherical cap harmonic analysis and Kalman filter. Proc ISC Int Symp Stoch Syst Theory Appl.  https://doi.org/10.5687/sss.2014.187 CrossRefGoogle Scholar
  98. Ohashi M, Sato Y, Yamada A et al (2016) Studies on spherical cap harmonic analysis for Japanese regional ionospheric delays and its prediction. Proc ISC Int Symp Stoch Syst Theory Appl 2016:320–325.  https://doi.org/10.5687/sss.2016.320 CrossRefGoogle Scholar
  99. Ou JM, Du AM, Thébault E et al (2013) A high resolution lithospheric magnetic field model over China. Sci China Earth Sci 56:1759–1768.  https://doi.org/10.1007/s11430-013-4580-y CrossRefGoogle Scholar
  100. Pavón-Carrasco FJ (2010) Modelización regional del campo geomagnético en Europa para los últimos 8000 años y desarrollo de aplicaciones. Universidad Complutense de Madrid, Servicio de Publicaciones, MadridGoogle Scholar
  101. Pavón-Carrasco FJ, Osete ML, Torta JM et al (2008a) Initial SCHA.DI.00 regional archaeomagnetic model for Europe for the last 2000 years. Phys Chem Earth.  https://doi.org/10.1016/j.pce.2008.02.024 CrossRefGoogle Scholar
  102. Pavón-Carrasco FJ, Osete ML, Torta JM, Gaya-Piqué LR (2008b) A regional archaeomagnetic model for the palaeointensity in Europe for the last 2000 years and its implications for climatic change. Pure Appl Geophys.  https://doi.org/10.1007/s00024-008-0354-4 CrossRefGoogle Scholar
  103. Pavón-Carrasco FJ, Osete ML, Torta JM, Gaya-Piqué LR (2009) A regional archeomagnetic model for Europe for the last 3000 years, SCHA.DIF.3K: applications to archeomagnetic dating. Geochem Geophys Geosyst.  https://doi.org/10.1029/2008gc002244 CrossRefGoogle Scholar
  104. Pavón-Carrasco FJ, Torta JM, Catalán M et al (2013) Improving total field geomagnetic secular variation modeling from a new set of cross-over marine data. Phys Earth Planet Inter.  https://doi.org/10.1016/j.pepi.2013.01.002 CrossRefGoogle Scholar
  105. Pavón-Carrasco FJ, Gómez-Paccard M, Hervé G et al (2014) Intensity of the geomagnetic field in Europe for the last 3 ka: influence of data quality on geomagnetic field modeling. Geochem Geophys Geosyst.  https://doi.org/10.1002/2014GC005311 CrossRefGoogle Scholar
  106. Pfrommer A, Henning A (2018) The ultimate intrinsic signal-to-noise ratio of loop- and dipole-like current patterns in a realistic human head model. Magn Reson Med 80:2122–2138.  https://doi.org/10.1002/mrm.27169 CrossRefGoogle Scholar
  107. Pothier NM, Weimer DR, Moore W (2015) Quantitative maps of geomagnetic perturbation vectors during substorm onset and recovery. J Geophys Res Space Phys.  https://doi.org/10.1002/2014JA020602 CrossRefGoogle Scholar
  108. Qamili E, De Santis A, Cianchini G et al (2010) Two geomagnetic regional models for Albania and south-east Italy from 1990 to 2010 with prediction to 2012 and comparison with IGRF-11. Earth Planets Space 62:833–841.  https://doi.org/10.5047/eps.2010.07.011 CrossRefGoogle Scholar
  109. Qiu Y, Wang Z, Jiang W et al (2017) Combining CHAMP and swarm satellite data to invert the lithospheric magnetic field in the Tibetan Plateau. Sensors (Switzerland) 17:238.  https://doi.org/10.3390/s17020238 CrossRefGoogle Scholar
  110. Rotanova NM, Odintsov SD (1999) Model of the MAGSAT magnetic anomaly field over Europe using spherical cap harmonic analysis. Phys Chem Earth A Solid Earth Geod 24:455–459.  https://doi.org/10.1016/S1464-1895(99)00075-7 CrossRefGoogle Scholar
  111. Rotanova N, Odintsov S, Sas-Uhrynowski A, Welker E (2000) The magnetic anomaly field over Poland and adjacent regions by using Magsat satellite data. Acta Geophys Pol 48:223–240Google Scholar
  112. Schott J-J, Thébault E (2011) Modelling the earth’s magnetic field from global to regional scales. In: Mandea M, Korte M (eds) Geomagnetic observations and models. Springer, Dordrecht, pp 229–264CrossRefGoogle Scholar
  113. Stening R (2008) The shape of the Sq current system. Ann Geophys 26:1767–1775.  https://doi.org/10.5194/angeo-26-1767-2008 CrossRefGoogle Scholar
  114. Stening RJ, Reztsova T, Ivers D et al (2008) Spherical cap harmonic analysis of magnetic variations data from mainland Australia. Earth Planets Space 60:1177–1186.  https://doi.org/10.1186/BF03352875 CrossRefGoogle Scholar
  115. Talarn À, Pavón-Carrasco FJ, Torta JM, Catalán M (2017) Evaluation of using R-SCHA to simultaneously model main field and secular variation multilevel geomagnetic data for the North Atlantic. Phys Earth Planet Inter.  https://doi.org/10.1016/j.pepi.2016.11.008 CrossRefGoogle Scholar
  116. Taylor PT, Kis KI, Wittmann G (2013) Interpretation of CHAMP magnetic anomaly data over the Pannonian Basin region using lower altitude horizontal gradient data. Acta Geod Geophys 48:275–280.  https://doi.org/10.1007/s40328-013-0026-4 CrossRefGoogle Scholar
  117. Thébault E (2006) Global lithospheric magnetic field modelling by successive regional analysis. Earth Planets Space 58:485–495CrossRefGoogle Scholar
  118. Thébault E (2008) A proposal for regional modelling at the earth’s surface, R-SCHA2D. Geophys J Int 174:118–134.  https://doi.org/10.1111/j.1365-246X.2008.03823.x CrossRefGoogle Scholar
  119. Thébault E, Gaya-Piqué L (2008) Applied comparisons between SCHA and R-SCHA regional modeling techniques. Geochem Geophys Geosyst 9:1–25.  https://doi.org/10.1029/2008GC001953 CrossRefGoogle Scholar
  120. Thébault E, Schott JJ, Mandea M, Hoffbeck JP (2004) A new proposal for spherical cap harmonic modelling. Geophys J Int 159:83–103.  https://doi.org/10.1111/j.1365-246X.2004.02361.x CrossRefGoogle Scholar
  121. Thébault E, Schott JJ, Mandea M (2006a) Revised spherical cap harmonic analysis (R-SCHA): validation and properties. J Geophys Res Solid Earth.  https://doi.org/10.1029/2005JB003836 CrossRefGoogle Scholar
  122. Thébault E, Mandea M, Schott JJ (2006b) Modeling the lithospheric magnetic field over France by means of revised spherical cap harmonic analysis (R-SCHA). J Geophys Res Solid Earth 111:1–13.  https://doi.org/10.1029/2005JB004110 CrossRefGoogle Scholar
  123. Thébault E, Vigneron P, Maus S et al (2013) Swarm SCARF dedicated lithospheric field inversion chain. Earth Planets Space 65:7.  https://doi.org/10.5047/eps.2013.07.008 CrossRefGoogle Scholar
  124. Thébault E, Vigneron P, Langlais B, Hulot G (2016) A Swarm lithospheric magnetic field model to SH degree 80. Earth Planets Space 68:126.  https://doi.org/10.1186/s40623-016-0510-5 CrossRefGoogle Scholar
  125. Thébault E, Langlais B, Oliveira JS et al (2018) A time-averaged regional model of the Hermean magnetic field. Phys Earth Planet Inter 276:93–105.  https://doi.org/10.1016/j.pepi.2017.07.001 CrossRefGoogle Scholar
  126. Toh H, De Santis A (2015) Modeling of regional geomagnetic field based on ground observation network including seafloor geomagnetic observatories. In: Favali P, Beranzoli L, De Santis A (eds) Seafloor observatories: a new vision of the earth from the abyss. Springer, Berlin, pp 585–599CrossRefGoogle Scholar
  127. Toh H, Kanezaki H, Ichiki M (2007) A regional model of the geomagnetic field over the Pacific Ocean for epoch 2002. Geophys Res Lett 34:1–5.  https://doi.org/10.1029/2007GL029341 CrossRefGoogle Scholar
  128. Torta JM, De Santis A (1996) On the derivation of the earth’s conductivity structure by means of spherical cap harmonic analysis. Geophys J Int 127:441–451CrossRefGoogle Scholar
  129. Torta JM, Curto JJ, Garcia A (1991) Geomagnetic anomaly field of Canary Islands derived from Magsat satellite. Cah du Cent Eur Géodynamique Séismologie 4:179–191Google Scholar
  130. Torta JM, García A, Curto JJ, De Santis A (1992) New representation of geomagnetic secular variation over restricted regions by means of spherical cap harmonic analysis: application to the case of Spain. Phys Earth Planet Inter 74:209–217.  https://doi.org/10.1016/0031-9201(92)90011-J CrossRefGoogle Scholar
  131. Torta JM, Garcia A, De Santis A (1993) A geomagnetic reference field for Spain at 1990. J Geomagn Geoelectr 45:573–588CrossRefGoogle Scholar
  132. Torta JM, Curto JJ, Bencze P (1997) Behavior of the quiet day ionospheric current system in the European region. J Geophys Res Space Phys 102:2483–2494.  https://doi.org/10.1029/96JA03463 CrossRefGoogle Scholar
  133. Torta JM, De Santis A, Chiappini M, Von Frese RRB (2002) A model of the secular change of the geomagnetic field for Antarctica. Tectonophysics 347:179–187.  https://doi.org/10.1016/S0040-1951(01)00244-X CrossRefGoogle Scholar
  134. Torta JM, Gaya-Piqué LR, De Santis A (2006) Spherical cap harmonic analysis of the geomagnetic field with application for aeronautical mapping. In: Rasson JL, Delipetrov T (eds) Geomagnetics for aeronautical safety. A case study in and around the Balkans. Springer, Berlin, pp 291–307CrossRefGoogle Scholar
  135. Tozzi R, De Santis A, Gaya-Piqué LR (2013) Antarctic geomagnetic reference model updated to 2010 and provisionally to 2012. Tectonophysics 585:13–25.  https://doi.org/10.1016/j.tecto.2012.06.034 CrossRefGoogle Scholar
  136. Verbanac G (2007) On regional modeling of the main geomagnetic field. Geofizika 24:1–27Google Scholar
  137. Verbanac G, Korte M, Mandea M (2009) Four decades of European geomagnetic secular variation and acceleration. Ann Geophys 52:487–503Google Scholar
  138. Vervelidou F, Thébault E (2015) Global maps of the magnetic thickness and magnetization of the Earth’s lithosphere. Earth Planets Space 67:173.  https://doi.org/10.1186/s40623-015-0329-5 CrossRefGoogle Scholar
  139. Vervelidou F, Thébault E, Korte M (2018) A high-resolution lithospheric magnetic field model over southern Africa based on a joint inversion of CHAMP, Swarm, WDMAM, and ground magnetic field data. Solid Earth 9:897–910.  https://doi.org/10.5194/se-9-897-2018 CrossRefGoogle Scholar
  140. von Frese RRB, Golynsky AV, Kim HR et al (2007) The next generation Antarctic digital magnetic anomaly map. US Geological Survey, RestonGoogle Scholar
  141. Walker JK (1989) Spherical cap harmonic modelling of high latitude magnetic activity and equivalent sources with sparse observations. J Atmos Terr Phys 51:67–80.  https://doi.org/10.1016/0021-9169(89)90106-2 CrossRefGoogle Scholar
  142. Walker JK, Semenov VY, Hansen TL (1997) Synoptic models of high latitude magnetic activity and equivalent ionospheric and induced currents. J Atmos Solar Terr Phys 59:1435–1452.  https://doi.org/10.1016/S1364-6826(96)00168-X CrossRefGoogle Scholar
  143. Wang Y, Jiang X (2017) The spherical cap harmonic analysis modeling method based on disturbing gravity gradients. Acta Geod Cartogr Sin 46:1802–1811Google Scholar
  144. Wang J, Wu K (2019) Construction of regional geoid using a virtual spherical harmonics model. J Appl Geod 13(2):151–158CrossRefGoogle Scholar
  145. Waters CL, Gjerloev JW, Dupont M, Barnes RJ (2015) Global maps of ground magnetometer data. J Geophys Res Space Phys 120:9651–9660.  https://doi.org/10.1002/2015JA021596 CrossRefGoogle Scholar
  146. Weimer DR (2001) Maps of ionospheric field-aligned currents as a function of the interplanetary magnetic field derived from Dynamics Explorer 2 data. J Geophys Res Space Phys 106:12889–12902.  https://doi.org/10.1029/2000JA000295 CrossRefGoogle Scholar
  147. Weimer DR (2005a) Improved ionospheric electrodynamic models and application to calculating Joule heating rates. J Geophys Res Space Phys.  https://doi.org/10.1029/2004JA010884 CrossRefGoogle Scholar
  148. Weimer DR (2005b) Predicting surface geomagnetic variations using ionospheric electrodynamic models. J Geophys Res Space Phys 110:1–12.  https://doi.org/10.1029/2005JA011270 CrossRefGoogle Scholar
  149. Weimer DR (2013) An empirical model of ground-level geomagnetic perturbations. Space Weather 11:107–120.  https://doi.org/10.1002/swe.20030 CrossRefGoogle Scholar
  150. Weimer DR, Clauer CR, Engebretson MJ et al (2010) Statistical maps of geomagnetic perturbations as a function of the interplanetary magnetic field. J Geophys Res Space Phys 115:1–21.  https://doi.org/10.1029/2010JA015540 CrossRefGoogle Scholar
  151. Weimer DR, Bowman BR, Sutton EK, Tobiska WK (2011) Predicting global average thermospheric temperature changes resulting from auroral heating. J Geophys Res Space Phys 116:1–15.  https://doi.org/10.1029/2010JA015685 CrossRefGoogle Scholar
  152. Weimer DR, Edwards TR, Olsen N (2017) Linear response of field-aligned currents to the interplanetary electric field. J Geophys Res Space Phys 122:8502–8515.  https://doi.org/10.1002/2017JA024372 CrossRefGoogle Scholar
  153. Welling DT, Jordanova VK, Glocer A et al (2015) The two-way relationship between ionospheric outflow and the ring current. J Geophys Res Space Phys 120:4338–4353.  https://doi.org/10.1002/2015JA021231 CrossRefGoogle Scholar
  154. Younis GKA, Jäger R, Becker M (2013) Transformation of global spherical harmonic models of the gravity field to a local adjusted spherical cap harmonic model. Arab J Geosci 6:375–381.  https://doi.org/10.1007/s12517-011-0352-1 CrossRefGoogle Scholar
  155. Zhao X, Jin S, Mekik C, Feng J (2016) Evaluation of regional ionospheric grid model over China from dense GPS observations. Geod Geodyn 7:361–368.  https://doi.org/10.1016/j.geog.2016.04.011 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Observatori de l’Ebre, (OE)CSIC - Univ. Ramon LlullRoquetesSpain

Personalised recommendations