Advertisement

The Contribution of Wind-Generated Waves to Coastal Sea-Level Changes

  • Guillaume DodetEmail author
  • Angélique Melet
  • Fabrice Ardhuin
  • Xavier Bertin
  • Déborah Idier
  • Rafael Almar
Article

Abstract

Surface gravity waves generated by winds are ubiquitous on our oceans and play a primordial role in the dynamics of the ocean–land–atmosphere interfaces. In particular, wind-generated waves cause fluctuations of the sea level at the coast over timescales from a few seconds (individual wave runup) to a few hours (wave-induced setup). These wave-induced processes are of major importance for coastal management as they add up to tides and atmospheric surges during storm events and enhance coastal flooding and erosion. Changes in the atmospheric circulation associated with natural climate cycles or caused by increasing greenhouse gas emissions affect the wave conditions worldwide, which may drive significant changes in the wave-induced coastal hydrodynamics. Since sea-level rise represents a major challenge for sustainable coastal management, particularly in low-lying coastal areas and/or along densely urbanized coastlines, understanding the contribution of wind-generated waves to the long-term budget of coastal sea-level changes is therefore of major importance. In this review, we describe the physical processes by which sea states may affect coastal sea level at several timescales, we present the methods currently used to estimate the wave contribution to coastal sea-level changes, we describe past and future wave climate variability, we discuss the contribution of wave to coastal sea-level changes, and we discuss the limitations and perspectives of this research field.

Keywords

Wind waves Sea level Coastal zone Climate change 

Notes

Acknowledgements

This paper arose from the international workshop on “Understanding the Relationship between Coastal Sea Level and Large-Scale Ocean Circulation” held at the International Space Science Institute (ISSI), Bern, Switzerland, on March 5–9, 2018. The authors are grateful to Anny Cazenave for taking charge of the implementation of this special issue. GD is supported by the ESA Sea State Climate Change Initiative. FA is supported by Labex Mer via Grant ANR-10-LABX-19-01, and the ESA Sea State Climate Change Initiative. XB is supported by the Regional Chair Project EVEX. DI is supported by BRGM and ANR projects (PSO COTIER and RISCOPE) and is thankful to Jérémy Rohmer for constructive discussions on the meta-models.

References

  1. Abessolo Ondoa G, Almar R, Castelle B, Testut L, Leger F, Bonou F, Bergsma E, Meyssignac B, and Larson M (2019) On the use of shore-based video camera to monitor sea level at the coast: A case study in grand popo, benin (Gulf of Guinea, West Africa). J Atmos Ocean Technol (in review)Google Scholar
  2. Albuquerque J, Antolínez JAA, Rueda A, Méndez FJ, Coco G (2018) Directional correction of modeled sea and swell wave heights using satellite altimeter data. Ocean Model 131:103–114.  https://doi.org/10.1016/j.ocemod.2018.09.001 CrossRefGoogle Scholar
  3. Allender J, Audunson T, Barstow SF, Bjerken S, Krogstad HE, Steinbakke P, Vardtal L, Borgman LE, Graham C (1989) The WADIC project: a comprehensive field evaluation of directional wave instrumentation. Ocean Eng 16:505–536CrossRefGoogle Scholar
  4. Almar R, Blenkinsopp C, Almeida LP, Cienfuegos R, Catalan P (2017) Wave runup video motion detection using the Radon Transform. Coast Eng 130:46–51CrossRefGoogle Scholar
  5. Almar R, Bergsma EWJ, Maisongrande P, Melo de Almeida LP (2019) Wave-derived coastal bathymetry from satellite video imagery: a showcase with Pleiades persistent mode. Remote Sens Environ.  https://doi.org/10.1016/j.rse.2019.111263 CrossRefGoogle Scholar
  6. Almeida LP, Masselink G, Russell PE, Davidson MA (2015) Observations of gravel beach dynamics during high energy wave conditions using a laser scanner. Geomorphology 228:15–27.  https://doi.org/10.1016/j.geomorph.2014.08.019 CrossRefGoogle Scholar
  7. Almeida LP, Almar R, Meyssignac B, Viet NT (2018) Contributions to coastal flooding events in southeast of Vietnam and their link with global mean sea level rise. Geosciences 8:437CrossRefGoogle Scholar
  8. Alpers W, Rufenach C (1979) The effect of orbital motions on synthetic aperture radar imagery of ocean waves. IEEE Trans Antennas Propag 27:685–690.  https://doi.org/10.1109/TAP1979.1142163 CrossRefGoogle Scholar
  9. Aouf L, Lefèvre JM, Hauser D, Chapron B (2006) On the combined assimilation of RA-2 altimeter and ASAR wave data for the improvement of wave forecasting. In: Proceedings of 15 years of radar altimetry symposium, Venice, March 13–18, 2006Google Scholar
  10. Apotsos A, Raubenheimer B, Elgar S, Guza R, Smith JA (2007) Effects of wave rollers and bottom stress on wave setup. J Geophys Res Oceans 112(C2):C02003CrossRefGoogle Scholar
  11. Ardhuin F, Orfila A (2018) Wind waves. New Front Oper Oceanog 14:393–422.  https://doi.org/10.17125/gov2018.ch14 CrossRefGoogle Scholar
  12. Ardhuin F, Drake TG, Herbers THC (2002a) Observations of wave-generated vortex ripples on the North Carolina continental shelf. J Geophys Res Oceans 107:7-1–7-14.  https://doi.org/10.1029/2001JC000986 CrossRefGoogle Scholar
  13. Ardhuin F, Drake TG, Herbers THC (2002b) Observations of wave-generated vortex ripples on the North Carolina continental shelf. J Geophys Res 107:C10.  https://doi.org/10.1029/2001JC000986 CrossRefGoogle Scholar
  14. Ardhuin F, Herbers THC, Jessen PF, O’Reilly WC (2003) Swell transformation across the continental shelf. Part II: validation of a spectral energy balance equation. J Phys Oceanogr 33:1940–1953CrossRefGoogle Scholar
  15. Ardhuin F, Rascle N, Belibassakis KA (2008a) Explicit wave-averaged primitive equations using a generalized Lagrangian mean. Ocean Model 20(1):35–60CrossRefGoogle Scholar
  16. Ardhuin F, Jenkins AD, Belibassakis KA (2008b) Comments on the three-dimensional current and surface wave equations. J Phys Oceanogr 38(6):1340–1350CrossRefGoogle Scholar
  17. Ardhuin F, Rascle N, Belibassakis KA (2008c) Explicit wave-averaged primitive equations using a generalized Lagrangian mean. Ocean Model 20:35–60.  https://doi.org/10.1016/j.ocemod.2007.07.001 CrossRefGoogle Scholar
  18. Ardhuin F, Rascle N, Chapron B, Gula J, Molemaker J, Gille ST, Menemenlis D, Rocha C (2017) Small scale currents have large effects on wind wave heights. J Geophys Res 122(C6):4500–4517.  https://doi.org/10.1002/2016JC012413 CrossRefGoogle Scholar
  19. Ardhuin F, Aksenov Y, Benetazzo A, Bertino L, Brandt P, Caubet E, Chapron B, Collard F, Cravatte S et al (2018) Measuring currents, ice drift, and waves from space: the Sea surface KInematics Multiscale monitoring (SKIM) concept. Ocean Sci 14:337–354.  https://doi.org/10.5194/os-2017-65 CrossRefGoogle Scholar
  20. Ardhuin F, Stopa JE, Chapron B, Collard F, Husson R, Jensen RE, Johannessen J, Mouche A, Passaro M, Quartly GD, Swail V, Young I (2019) Observing sea states. Front Mar Sci.  https://doi.org/10.3389/fmars.2019.00124 CrossRefGoogle Scholar
  21. Arns A, Wahl T, Dangendorf S, Jensen J, Pattiaratchi C (2017) Sea-level rise induced amplification of coastal protection design heights. Nat Sci Rep.  https://doi.org/10.1038/srep40171 CrossRefGoogle Scholar
  22. Atkinson AL, Power HE, Moura T, Hammond T, Callaghan DP, Baldock TE (2017) Assessment of runup predictions by empirical models on non-truncated beaches on the south-east Australian coast. Coast Eng 119:15–31CrossRefGoogle Scholar
  23. Aucan J, Hoeke RK, Storlazzi CD, Stopa J, Wandres M, Lowe R (2019) Waves do not contribute to global sea-level rise. Nat Clim Change 9:2.  https://doi.org/10.1038/s41558-018-0377-5 CrossRefGoogle Scholar
  24. Barber NF, Ursell F, Darbyshire J, Tucker MJ (1946) A frequency analyser used in the study of ocean waves. Nature 158:329–335CrossRefGoogle Scholar
  25. Barnard PL, Short AD, Harley MD, Splinter KD, Vitousek S, Turner IL, Allan J, Banno M, Bryan KR, Doria A, Hansen JE, Kato S, Kuriyama Y, Randall-Goodwin E, Ruggiero P, Walker IJ, Heathfield DK (2015) Coastal vulnerability across the Pacific dominated by El Niño/Southern Oscillation. Nat Geosci 8:801–807.  https://doi.org/10.1038/ngeo2539 CrossRefGoogle Scholar
  26. Battjes JA (1974) Surf similarity. In: Proceedings of the 14th conference of Coast Eng. ASCE, 466–48Google Scholar
  27. Battjes JA, Bakkenes HJ, Janssen TT, van Dongeren AR (2004) Shoaling of subharmonic gravity waves. J Geophys Res 109:c02009.  https://doi.org/10.1029/2003JC001863 CrossRefGoogle Scholar
  28. Bennis AC, Dumas F, Ardhuin F, Blanke B (2014) Mixing parameterization: impacts on rip currents and wave set-up. Ocean Eng 84:213–227CrossRefGoogle Scholar
  29. Bergsma EWJ, Almar R (2018) Video-based depth inversion techniques, a method comparison with synthetic cases. Coast Eng 138:199–209CrossRefGoogle Scholar
  30. Bergsma EWJ, Almar R and Maisongrande P (2019) Radon-augmented SentinelII satellite imagery to derive wave-patterns and regional bathymetry. IEEE Trans Geosci Remote Sens (in review)Google Scholar
  31. Bertin X, Bruneau N, Breilh JF, Fortunato AB, Karpytchev M (2012) Importance of wave age and resonance in storm surges: the case Xynthia, Bay of Biscay. Ocean Model 42:16–30.  https://doi.org/10.1016/j.ocemod.2011.11.001 CrossRefGoogle Scholar
  32. Bertin X, Prouteau E, Letetrel C (2013) A significant increase in wave height in the North Atlantic Ocean over the 20th century. Glob Planet Change.  https://doi.org/10.1016/j.gloplacha.2013.03.009 CrossRefGoogle Scholar
  33. Bertin X, Li K, Roland A, Bidlot JR (2015) The contribution of short-waves in storm surges: two case studies in the Bay of Biscay. Cont Shelf Res 96:1–15CrossRefGoogle Scholar
  34. Bertin X, Olabarrieta M, MacCall R (2017) Hydrodynamics under storm conditions. In: Coastal storms: processes and impacts. Wiley, LondonGoogle Scholar
  35. Bertin X, de Bakker A, van Dongeren A, Coco G, André G, Ardhuin F, Bonneton P, Bouchette F, Castelle B, Crawford WC, Davidson M, Deen M, Dodet G, Guérin T, Inch K, Leckler F, McCall R, Muller H, Olabarrieta M, Roelvink D, Ruessink G, Sous D, Stutzmann E, Tissier M (2018) Infragravity waves: from driving mechanisms to impacts. Earth Sci Rev 177:774–799.  https://doi.org/10.1016/j.earscirev.2018.01.002 CrossRefGoogle Scholar
  36. Bidlot JR (2017) Intercomparison of operational wave forecasting systems against buoys: data from ECMWF, MetOffice, FNMOC, ECCC, NCEP, MeteoFrance, DWD, BoM, SHOM, JMA, KMA, Puerto del Estado, DMI, NZM, METNO, SHN-SM, September 2017 to November 2017, tech. rep, Joint WMO-IOC Technical Commission for Oceanography and Marine Meteorology, 2017Google Scholar
  37. Biesel F (1952) Équations générales au second ordre de la houle irrégulière. La Houille Blanche 7(3):372–376.  https://doi.org/10.1051/lhb/1952033 CrossRefGoogle Scholar
  38. Birkemeier WA (1997) The sandyduck ’97 nearshore field experiment. Defense Technical Information Center, Fort Belvoir.  https://doi.org/10.21236/ADA629329 CrossRefGoogle Scholar
  39. Blenkinsopp CE, Mole MA, Turner IL, Peirson WL (2010) Measurements of the time-varying free-surface profile across the swash zone obtained using an industrial LIDAR. Coast Eng 57:1059–1065.  https://doi.org/10.1016/j.coastaleng.2010.07.001 CrossRefGoogle Scholar
  40. Bonneton P, Barthelemy E, Chazel F, Cienfuegos R, Lannes D, Marche F, Tissier M (2011) Recent advances in Serre-Green Naghdi modelling for wave transformation, breaking and runup processes. Eur J Mech B Fluids 30:589–597CrossRefGoogle Scholar
  41. Bonneton A, Lannes D, Martins K, Michallet H (2017) Nonlinear weakly dispersive method for recovering the elevation of irrotational surface waves from pressure measurements. Coast Eng.  https://doi.org/10.1016/j.coastaleng.2018.04.005 CrossRefGoogle Scholar
  42. Bowen AJ (1969) Rip currents. Theoretical investigations. J Geophys Res 74:5467–5478CrossRefGoogle Scholar
  43. Bowen AJ, Guza R (1978) Edge waves and surf beat. J Geophys Res 83:1913–1920CrossRefGoogle Scholar
  44. Bowen AJ, Inman DL, Simmons VP (1968) Wave ‘set-down’ and set-Up. J Geophys Res 73:2569–2577.  https://doi.org/10.1029/JB073i008p02569 CrossRefGoogle Scholar
  45. Brodie KL, Raubenheimer B, Elgar S, Slocum RK, McNinch JE (2015) Lidar and pressure measurements of inner-surfzone waves and setup. J Atmos Ocean Technol 32:1945–1959.  https://doi.org/10.1175/JTECH-D-14-00222.1 CrossRefGoogle Scholar
  46. Brodie KL, Palmsten ML, Hesser TJ, Dickhudt PJ, Raubenheimer B, Ladner H, Elgar S (2018) Evaluation of video-based linear depth inversion performance and applications using altimeters and hydrographic surveys in a wide range of environmental conditions. Coast Eng 136:147–160CrossRefGoogle Scholar
  47. Bromirski PD, Cayan DR, Flick RE (2005) Wave spectral energy variability in the northeast Pacific. J Geophys Res 110:C03005.  https://doi.org/10.1029/2004JC002398 CrossRefGoogle Scholar
  48. Bromirski PD, Cayan DR, Helly J, Wittmann P (2013) Wave power variability and trends across the North Pacific. J Geophys Res Oceans 118:6329–6348.  https://doi.org/10.1002/2013JC009189 CrossRefGoogle Scholar
  49. Bruneau N, Fortunato AB, Dodet G, Freire P, Oliveira A, Bertin X (2011) Future evolution of a tidal inlet due to changes in wave climate, Sea level and lagoon morphology (Óbidos lagoon, Portugal). Cont Shelf Res 31:1915–1930.  https://doi.org/10.1016/j.csr.2011.09.001 CrossRefGoogle Scholar
  50. Bruun P (1962) Sea-level rise as a cause of shore erosion. J Waterw Har Div 88:117–132Google Scholar
  51. Camus P, Mendez FJ, Medina R (2011) A hybrid efficient method to downscale wave climate to coastal areas. Coast Eng 58:851–862.  https://doi.org/10.1016/j.coastaleng.2011.05.007 CrossRefGoogle Scholar
  52. Camus P, Mendez FJ, Losada I, Menendez M, Espejo A, Pérez J, Rueda A, Guanche Y (2014a) A method for finding the optimal predictor indices for local wave climate conditions. Ocean Dyn 64:1025–1038.  https://doi.org/10.1007/s10236-014-0737-2 CrossRefGoogle Scholar
  53. Camus P, Menendez M, Mendez FJ, Izaguirre C, Espejo A, Canovas V, Perez J, Rueda A, Losada IJ, Medina R (2014b) A weather-type statistical downscaling framework for ocean wave climate. J Geophys Res Oceans 119:7389–7405.  https://doi.org/10.1002/2014jc010141 CrossRefGoogle Scholar
  54. Camus P, Losada IJ, Izaguirre C, Espejo A, Menéndez M, Pérez J (2017) Statistical wave climate projections for coastal impact assessments. Earth’s Future 5:918–933.  https://doi.org/10.1002/2017EF000609 CrossRefGoogle Scholar
  55. Carrier GF, Greenspan HP (1958) Water waves of finite amplitude on a sloping beach. J Fluid Mech 4:97–109.  https://doi.org/10.1017/S0022112058000331 CrossRefGoogle Scholar
  56. Carter DJT, Draper L (1988) Has the north-east Atlantic become rougher? Nature 332:494–494.  https://doi.org/10.1038/332494a0 CrossRefGoogle Scholar
  57. Casas-Prat M, Wang XL, Swart N (2018) CMIP5-based global wave climate projections including the entire Arctic Ocean. Ocean Model 123:66–85.  https://doi.org/10.1016/j.ocemod.2017.12.003 CrossRefGoogle Scholar
  58. Castelle B, Marieu V, Bujan S, Ferreira S, Parisot J.-P, Capo S, Sénéchal N, Chouzenoux T (2014) Equilibrium shoreline modelling of a highenergy meso-macrotidal multiple-barred beach. Mar Geol 347:85–94.  https://doi.org/10.1016/j.margeo.2013.11.003 CrossRefGoogle Scholar
  59. Castelle B, Dodet G, Masselink G, Scott T (2018) Increased winter‐mean wave height, variability, and periodicity in the Northeast Atlantic over 1949–2017. Geophys Res Lett 45:3586–3596.  https://doi.org/10.1002/2017GL076884 CrossRefGoogle Scholar
  60. Cazenave A, Cozannet GL (2014) Sea level rise and its coastal impacts. Earth’s Future 2:15–34.  https://doi.org/10.1002/2013EF000188 CrossRefGoogle Scholar
  61. Cazenave et al (WCRP Global Sea Level Budget Group) (2018) Global sea-level budget 1993–present. Earth Syst Sci Data 10:1551–1590.  https://doi.org/10.5194/essd-10-1551-2018 CrossRefGoogle Scholar
  62. Charles E, Idier D, Thiébot J, Le Cozannet G, Pedreros R, Ardhuin A, Planton S (2012) Present wave climate in the Bay of Biscay: spatiotemporal variability and trends from 1958 to 2001. J Climate 25:2020–2039.  https://doi.org/10.1175/JCLI-D-11-00086.1 CrossRefGoogle Scholar
  63. Chen Q, Kirby JT, Dalrymple RA, Shi F, Thornton EB (2002) Boussinesq modeling of longshore currents. J Geophys Res 108(C11):3362.  https://doi.org/10.1029/2002jc001308 CrossRefGoogle Scholar
  64. Cheriton OM, Storlazzi CD, Rosenberger KJ (2016) Observations of wave transformation over a fringing coral reef and the importance of low-frequency waves and offshore water levels to runup, overwash, and coastal flooding. J Geophys Res Oceans 121(5):3121–3140CrossRefGoogle Scholar
  65. Chini N, Stansby P, Leake J, Wolf J, Roberts-Jones J, Lowe J (2010) The impact of sea level rise and climate change on inshore wave climate: a case study for East Anglia (UK). Coast Eng 57(11–12):973–984.  https://doi.org/10.1016/j.coastaleng.2010.05.009 CrossRefGoogle Scholar
  66. Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne AJ, Pfeffer WT, Stammer D, Unnikrishnan AS (2013) Sea level change. In: Stocker TF, Qin D, Plattner G.-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1137–1216.  https://doi.org/10.1017/CBO9781107415324.026
  67. Cipollini P, Benveniste J, Birol F, Joana Fernandes M, Obligis E, Passaro M, Ted Strub P, Valladeau G, Vignudelli S, Wilkin J (2017) Satellite altimetry in coastal regions. In: Satellite altimetry over oceans and land surfaces, pp 343–380.  https://doi.org/10.1201/9781315151779
  68. Cohn N, Ruggiero P (2016) The influence of seasonal to interannual nearshore profile variability on extreme water levels: modeling wave runup on dissipative beaches. Coast Eng 115:79–92CrossRefGoogle Scholar
  69. Cooper JAG, Pilkey OH (2004) Sea-level rise and shoreline retreat: time to abandon the Bruun Rule. Glob Planet Change 43:157–171.  https://doi.org/10.1016/j.gloplacha.2004.07.001 CrossRefGoogle Scholar
  70. Crawford W, Ballu V, Bertin X, Karpytchev M (2015) The sources of deep ocean infragravity waves observed in the North Atlantic Ocean. J Geophys Res 120:5120–5133.  https://doi.org/10.1002/2014JC010657 CrossRefGoogle Scholar
  71. Crosby SC, Cornuelle BD, O’Reilly WC, Guza RT (2017) Assimilating global wave model predictions and deep-water wave observations in nearshore swell predictions. J Atmos. Ocean Technol 34:1823–1836.  https://doi.org/10.1175/JTECH-D-17-0003.1 CrossRefGoogle Scholar
  72. Danilo C, Melgani F (2016) Wave period and coastal bathymetry using wave propagation on optical images. IEEE Trans Geosci Remote Sens 54:6307–6319.  https://doi.org/10.1109/TGRS2016.2579266 CrossRefGoogle Scholar
  73. De Bakker ATM, Tissier MFS, Ruessink BG (2014) Shoreline dissipation of infragravity waves. Cont Shelf Res 72:73–82.  https://doi.org/10.1016/j.csr.2013.11.013 CrossRefGoogle Scholar
  74. Dean RG (1977) Equilibrium beach profiles: U.S. atlantic and gulf coasts. Department of Civil Engineering and College of Marine Studies, University of DelawareGoogle Scholar
  75. Di Luccio D, Benassai G, Budillon G, Mucerino L, Montella R, Pugliese Carratelli E (2018) Wave run-up prediction and observation in a micro-tidal beach. Nat Hazards Earth Syst Sci 18:2841–2857CrossRefGoogle Scholar
  76. Díaz-Sánchez R, López-Gutiérrez JS, Lechuga A, Negro V (2014) Runup variability due to time dependence and stochasticity in the beach profiles: two extreme cases of the Spanish coast. J Coast Res 70:1–6.  https://doi.org/10.2112/SI70-001.1 CrossRefGoogle Scholar
  77. Díez J, Uriarte A, Cánovas V, Medina R (2017) A parametric model for dry beach equilibrium profiles. Coast Eng 127:134–144CrossRefGoogle Scholar
  78. Dodet G, Bertin X, Taborda R (2010) Wave climate variability in the North-East Atlantic Ocean over the last six decades. Ocean Model 31:120–131.  https://doi.org/10.1016/j.ocemod.2009.10.010 CrossRefGoogle Scholar
  79. Dodet G, Bertin X, Bruneau N, Fortunato A, Nahon A, Roland A (2013) Wave-current interactions in a wave-dominated tidal inlet. J Geophys Res Ocean 118:1587–1905.  https://doi.org/10.1002/jgrc.20146 CrossRefGoogle Scholar
  80. Dodet G, Leckler F, Sous D, Ardhuin F, Filipot JF, Suanez S (2018) Wave runup over steep rocky cliffs. J Geophys Res Oceans 123:7185–7205.  https://doi.org/10.1029/2018JC013967 CrossRefGoogle Scholar
  81. Dodet G, Castelle B, Masselink G, Scott T, Davidson M, Floc’h F, Jackson D, Suanez S (2019) Beach recovery from extreme storm activity during the 2013/14 winter along the Atlantic coast of Europe. Earth Surf Process Landf.  https://doi.org/10.1002/esp.4500
  82. Durand M, Fu L, Lettenmaier DP, Alsdorf DE, Rodriguez E, Esteban-Fernandez D (2010) The surface water and ocean topography mission: Observing terrestrial surface water and oceanic submesoscale eddies. Proc IEEE 98:766–779.  https://doi.org/10.1109/JPROC.2010.2043031 CrossRefGoogle Scholar
  83. Elgar S, Herbers THC, Okihiro M, Oltman-Shay J, Guza RT (1992) Observations of infragravity waves. J Geophys Res Oceans 97:15573–15577.  https://doi.org/10.1029/92JC01316 CrossRefGoogle Scholar
  84. Fiedler JW, Brodie KL, McNinch JE, Guza RT (2015) Observations of runup and energy flux on a low-slope beach with high-energy, long-period ocean swell. Geophys Res Lett.  https://doi.org/10.1002/2015gl066,124 CrossRefGoogle Scholar
  85. Ford M, Merrifield MA, Becker JM (2018) Inundation of a low-lying urban atoll island: Majuro, Marshall Islands. Nat Hazards 91(3):1273–1297.  https://doi.org/10.1007/s11069-018-3183-5 CrossRefGoogle Scholar
  86. Fortunato AB, Freire P, Bertin X, Rodrigues M, Liberato MLR, Ferreira J (2017) A numerical study of the February 15, 1941 storm in the Tagus estuary. Cont Shelf Res 144:50–64.  https://doi.org/10.1016/j.csr.2017.06.023 CrossRefGoogle Scholar
  87. Gain L (1923) La prédiction des houles au Maroc. Revue Scientifique 61(19):605–615Google Scholar
  88. Gainza J, Rueda A, Camus P, Tomas A, Méndez FJ, Sano M, and Tomlinson R (2018) A meta-modelling approach for estimating long-term wave run-up and total water level on beaches. J Coast Res 34(2):475–489. Coconut Creek (Florida), ISSN 0749-0208Google Scholar
  89. Garcez-Faria A, Thornton E, Lippmann T, Stanton T (2000) Undertow over a barred beach. J Geophys Res Oceans 105(C7):16999–17010CrossRefGoogle Scholar
  90. Gawehn M, van Dongeren A, van Rooijen A, Storlazzi CD, Cheriton OM, Reniers A (2016) Identification and classification of very low frequency waves on a coral reef flat. J Geophys Res Oceans 121(10):7560–7574CrossRefGoogle Scholar
  91. Gemmrich J, Thomas B, Bouchard R (2011) Observational changes and trends in northeast Pacific wave records. Geophys Res Lett.  https://doi.org/10.1029/2011GL049518 CrossRefGoogle Scholar
  92. Gouldby B, Méndez FJ, Guanche Y, Rueda A, Mínguez R (2014) A methodology for deriving extreme nearshore sea conditions for structural design and flood risk analysis. Coast Eng 88:15–26.  https://doi.org/10.1016/j.coastaleng.2014.01.012 CrossRefGoogle Scholar
  93. Grant WD, Madsen OS (1986) The continental shelf bottom boundary layer. Annu Rev Fluid Mech 18:265–305CrossRefGoogle Scholar
  94. Gregory JM, Griffies SM, Hughes CW, Lowe JA, Church JA, Fukimori I, Gomez N, Kopp RE, Landerer F, Cozannet GL, Ponte RM, Stammer D, Tamisiea ME, van de Wal RSW (2019) Concepts and terminology for sea level: mean, variability and change, both local and global. Surv Geophys.  https://doi.org/10.1007/s10712-019-09525-z
  95. Guérin T, Bertin X, Coulombier T, de Bakker A (2018) Impacts of wave-induced circulation in the surf zone on wave setup. Ocean Model 123:86–97.  https://doi.org/10.1016/j.ocemod.2018.01.006 CrossRefGoogle Scholar
  96. Guimaraes PV, Ardhuin F, Sutherland P, Accensi M, Hamon M, Pérignon Y, Thomson J, Benetazzo A, Ferrant P (2018) A Surface KInematics Buoy (SKIB) for wave-current interactions studies. Ocean Sci Discuss.  https://doi.org/10.5194/os-2018-45 CrossRefGoogle Scholar
  97. Gulev SK, Grigorieva V (2004) Last century changes in ocean wind wave height from global visual wave data. Geophys Res Lett.  https://doi.org/10.1029/2004GL021040 CrossRefGoogle Scholar
  98. Gulev SK, Grigorieva V (2006) Variability of the winter wind waves and swell in the North Atlantic and North Pacific as revealed by the voluntary observing ship data. J Clim 19:5667–5685.  https://doi.org/10.1175/JCLI3936.1 CrossRefGoogle Scholar
  99. Gulev SK, Grigorieva V, Sterl A, Woolf D (2003) Assessment of the reliability of wave observations from voluntary observing ships: insights from the validation of a global wind wave climatology based on voluntary observing ship data. J Geophys Res 108(C7):3236CrossRefGoogle Scholar
  100. Guza RT, Feddersen F (2012) Effect of wave frequency and directional spread on shoreline runup. Geophys Res Lett 39:L11607CrossRefGoogle Scholar
  101. Guza RT, Thornton EB (1981) Wave set-up on a natural beach. J Geophys Res 86(C5):4133–4137CrossRefGoogle Scholar
  102. Guza RT, Thornton EB (1982) Swash oscillations on a natural beach. J Geophys Res 87:483–491.  https://doi.org/10.1029/JC087iC01p00483 CrossRefGoogle Scholar
  103. Hanslow DJ, Nielsen P (1992) Wave setup on beaches and in river entrances. In: Proceedings of 23rd international conference on coastal Engineering, pp 240–252Google Scholar
  104. Hasselmann K (1962) On the non-linear energy transfer in a gravity-wave spectrum part 1. General theory. J Fluid Mech 12(04):481–500.  https://doi.org/10.1017/S0022112062000373 CrossRefGoogle Scholar
  105. Hasselmann K, Chapron B, Aouf L, Ardhuin F, Collard F, Engen G, Hasselmann S, Heimbach P, Janssen P, Johnsen H, Krogstad H, Lehner S, Li J-G, Li X-M, Rosenthal W, Schulz-Stellenfleth J (2012) The ERS SAR wave mode: a breakthrough in global ocean wave observations. ERS Missions: 20 Years of Observing Earth. European Space Agency, Noordwijk, pp 165–198Google Scholar
  106. Hauser D, Tison C, Amiot T, Delaye L, Corcoral N, Castillan P (2017) SWIM: the first spaceborne wave scatterometer. IEEE Trans Geosci Remote Sens 55:3000–3014.  https://doi.org/10.1109/TGRS2017.2658672 CrossRefGoogle Scholar
  107. Hedges T, Mase H (2004) Modified Hunt’s equation incorporating wave setup. J Waterw Port Coast Ocean Eng 130:109–113CrossRefGoogle Scholar
  108. Hemer MA, Church JA, Hunter JR (2010) Variability and trends in the directional wave climate of the Southern Hemisphere. Int J Climatol 30:475–491.  https://doi.org/10.1002/joc.1900 CrossRefGoogle Scholar
  109. Hemer MA, Fan Y, Mori N, Semedo A, Wang XL (2013a) Projected changes in wave climate from a multi-model ensemble. Nat Clim Change 3:471–476.  https://doi.org/10.1038/nclimate1791 CrossRefGoogle Scholar
  110. Hemer MA, Katzfey J, Trenham CE (2013b) Global dynamical projections of surface ocean wave climate for a future high greenhouse gas emission scenario. Ocean Modell Ocean Surf Waves 70:221–245.  https://doi.org/10.1016/j.ocemod.2012.09.008 CrossRefGoogle Scholar
  111. Hemer MA, Wang XL, Webb A, COWCLIP contributors (2018) Report of the 2018 meeting for the WCRP-JCOMM coordinated ocean wave climate project, Paris, 21–23 May, 2018. JCOMM technical report 92. https://www.jcomm.info/index.php?option=com_oe&task=viewDocumentRecord&docID=22378
  112. Herbers THC, Burton MC (1997) Nonlinear shoaling of directionally spread waves on a beach. J Geophys Res 102(C9):21101–21114CrossRefGoogle Scholar
  113. Herbers THC, Lentz SJ (2010) Observing directional properties of ocean swell with an acoustic doppler current profiler (ADCP). J Atmos Ocean Technol 27:210–225CrossRefGoogle Scholar
  114. Herbers THC, Janssen TT, Colbert DB, MacMahan JH (2012) Observing ocean surface waves with gps-tracked buoys. J Atmos Ocean Technol 29:944–959CrossRefGoogle Scholar
  115. Hoeke RK, McInnes KL, Kruger JC, McNaught RJ, Hunter JR, Smithers SG (2013) Widespread inundation of Pacific islands triggered by distant-source wind-waves. Glob Planet Change 108:128–138.  https://doi.org/10.1016/j.gloplacha.2013.06.006 CrossRefGoogle Scholar
  116. Hoeke RK, McInnes KL, O’Grady JG (2015) Wind and wave setup contributions to extreme sea levels at a tropical high island: a stochastic cyclone simulation study for Apia. Samoa J Mar Sci Eng 3:1117–1135CrossRefGoogle Scholar
  117. Holman RA (1986) Extreme value statistics for wave run-up on a natural beach. Coast Eng 9:527–544CrossRefGoogle Scholar
  118. Holman R, Haller MC (2013) Remote sensing of the nearshore. Ann Rev Mar Sci 5:95–113.  https://doi.org/10.1146/annurev-marine-121211-172408 CrossRefGoogle Scholar
  119. Holman RA, Sallenger AH Jr (1985) Setup and Swash on a natural beach. J Geophys Res 90(C1):945–953CrossRefGoogle Scholar
  120. Holman RA, Stanley J (2007) The history and technical capabilities of Argus. Coast Eng 54:477–491.  https://doi.org/10.1016/j.coastaleng.2007.01.003 CrossRefGoogle Scholar
  121. Holman R, Plant NG, Holland KT (2013) cBathy: a robust algorithm for estimating nearshore bathymetry. J Geophys Res C Oceans 118:2595–2609.  https://doi.org/10.1002/jgrc.20199 CrossRefGoogle Scholar
  122. Holthuijsen LH, Herman A, Booij N (2003) Phase-decoupled refraction-diffraction for spectral wave models. Coast Eng 49:91–305CrossRefGoogle Scholar
  123. Hunt IA (1959) Design of seawalls and breakwaters. J Waterw Harbors Div 85:123–152Google Scholar
  124. Idier D, Bertin X, Thompson P, Pickering MD (2019) Interactions between mean sea level, tide, surge, waves and flooding: mechanisms and contributions to sea level variations at the coast. Surv Geophys.  https://doi.org/10.1007/s10712-019-09549-5 CrossRefGoogle Scholar
  125. Inch K, Davidson M, Masselink G, Russell P (2017) Observations of nearshore infragravity wave dynamics under high energy swell and wind-wave conditions. Cont Shelf Res 138:19–31.  https://doi.org/10.1016/j.csr.2017.02.010 CrossRefGoogle Scholar
  126. Iribarren CR, Nogales C (1949) Protection des ports. In: XVIIth international navigation congress. Lisbon, Portugal, pp 31–80Google Scholar
  127. Izaguirre C, Méndez FJ, Menéndez M, Losada IJ (2011) Global extreme wave height variability based on satellite data. Geophys Res Lett.  https://doi.org/10.1029/2011GL047302 CrossRefGoogle Scholar
  128. Jackson FC, Walton WT, Baker PL (1985) Aircraft and satellite measurement of ocean wave directional spectra using scanning-beam microwave radars. J Geophys Res 90:987–1004CrossRefGoogle Scholar
  129. Janssen TT, Herbers THC, Battjes JA (2006) Generalized evolution equation for nonlinear surface gravity waves over two-dimensional topography. J Fluid Mech 552:393–418CrossRefGoogle Scholar
  130. Jensen RE, Swail VR, Bouchard RH, Riley RE, Hesser TJ, Blaseckie M, MacIsaac C (2015) Field laboratory for ocean sea state investigation and experimentation: FLOSSIE intra-measurement evaluation of 6 N wave buoy systems. In: Proceedings of the 114th international workshop on wave hindcasting and forecasting & 5th coastal hazard symposiumGoogle Scholar
  131. Ji C, Zhang Q, Wu Y (2018) An empirical formula for maximum wave setup based on a coupled wave-current model. Ocean Eng 147:215–226CrossRefGoogle Scholar
  132. Jia G, Taflanidis AA (2013) Kriging metamodeling for approximation of high-dimensional wave and surge responses in real-time storm/hurricane risk assessment. Comput Methods Appl Mech Eng 261:24–38CrossRefGoogle Scholar
  133. Karunarathna H, Caraballo JH, Kuriyama Y, Mase H, Ranasinghe R, Reeve DE (2016) Linkages between sediment composition, wave climate and beach profile variability at multiple timescales. Mar Geol 381:194–208CrossRefGoogle Scholar
  134. Kennedy A, Westerink J, Smith J, Hope M, Hartman M, Taflanidis A, Tanaka S, Westerink H, Cheung K, Smith T, Hamann M, Minamide M, Ota A, Dawson C (2012) Tropical cyclone inundation potential on the hawaiian islands of Oahu and Kauai. Ocean Model 52–53:54–68CrossRefGoogle Scholar
  135. Kerbaol V, Chapron B, Vachon P (1998) Analysis of ERS-1/2 synthetic aperture radar wave mode imagettes. J Geophys Res 103(C4):7833–7846CrossRefGoogle Scholar
  136. Kim SY, Yasuda T, Mase H (2008) Numerical analysis of effects of tidal variations on storm surges and waves. App Ocean Res 30(4):311–322.  https://doi.org/10.1016/j.apor.2009.02.003 CrossRefGoogle Scholar
  137. Komar P (1998) Beach processes and sedimentation, 2nd edn. Prentice Hall, New JerseyGoogle Scholar
  138. Kudryavtsev V, Yurovskaya M, Chapron B, Collard F, Donlon C (2017) Sun glitter imagery of surface waves. Part 2: waves transformation on ocean currents. J Geophys Res.  https://doi.org/10.1002/2016jc012426 CrossRefGoogle Scholar
  139. Kumar N, Voulgaris G, Warner JC, Olabarrieta M (2012) Implementation of the vortex force formalism in the coupled ocean-atmosphere-wavesediment transport (COAWST) modeling system for inner shelf and surf zone applications. Ocean Model 47:65–95.  https://doi.org/10.1016/j.ocemod.2012.01.003 CrossRefGoogle Scholar
  140. Laugel A, Menendez M, Benoit M, Mattarolo G, Méndez F (2014) Wave climate projections along the French coastline: dynamical versus statistical downscaling methods. Ocean Model 84:35–50.  https://doi.org/10.1016/j.ocemod.2014.09.002 CrossRefGoogle Scholar
  141. Longuet-Higgins M, Stewart R (1962) Radiation stress and mass transport in gravity waves, with application to surf beats. J Fluid Mech 13(4):481–504CrossRefGoogle Scholar
  142. Longuet-Higgins MS, Stewart R (1964) Radiation stresses in water waves; a physical discussion, with applications. Deep Sea Res Oceanogr Abstracts 11:529–562CrossRefGoogle Scholar
  143. Longuet-Higgins MS, Cartwright DE, Smith ND (1963) Observations of the directional spectrum of sea waves using the motions of a floating buoy. In: Ocean wave spectra, proceedings of a conference, Easton, Maryland, pp 111–136, National Academy of Sciences, Prentice-HallGoogle Scholar
  144. Luijendijk A, Hagenaars G, Ranasinghe R, Baart F, Donchyts G, Aarninkhof S (2018) The state of the world’s beaches. Sci Rep 8:6641CrossRefGoogle Scholar
  145. Lumpkin T, Ozgokmen T, Centurioni L (2016) Advances in the application of surface drifters. Ann Rev Mar Sci.  https://doi.org/10.1146/annurev-marine-010816-060641 CrossRefGoogle Scholar
  146. Magne R, Belibassakis K, Herbers THC, Ardhuin F, O’Reilly WC, Rey V (2007) Evolution of surface gravity waves over a submarine canyon. J Geophys Res 112:C01002.  https://doi.org/10.1029/2005JC003035 CrossRefGoogle Scholar
  147. Malhadas MS, Leitão PC, Silva A, Neves R (2009) Effect of coastal waves on sea-level in Óbidos Lagoon, Portugal. Cont Shelf Res 29(9):1240–1250CrossRefGoogle Scholar
  148. Marchesiello P, Benshila R, Almar R, Uchiyama Y, McWilliams JC, Shchepetkin A (2015) On tridimensional rip current modeling. Ocean Model 96:36–48.  https://doi.org/10.1016/j.ocemod.2015.07.003 CrossRefGoogle Scholar
  149. Martins K, Blenkinsopp CE, Power HE, Bruder B, Puleo JA, Bergsma EWJ (2017) High-resolution monitoring of wave transformation in the surf zone using a LiDAR scanner array. Coast Eng 128:37–43.  https://doi.org/10.1016/j.coastaleng.2017.07.007 CrossRefGoogle Scholar
  150. Martins K, Blenkinsopp CE, Deigaard R, Power HE (2018) Energy dissipation in the inner surf zone: new insights from LiDAR-based roller geometry measurements. J Geophys Res Oceans (in press)Google Scholar
  151. Mase H (1989) Random wave runup height on gentle slope. J Waterw Port Coast Ocean Eng 115:649–661CrossRefGoogle Scholar
  152. Masselink G, Russell P, Turner I, Blenkinsopp C (2009) Net sediment transport and morphological change in the swash zone of a high-energy sandy beach from swash event to tidal cycle time scales. Mar Geol 267:18–35.  https://doi.org/10.1016/j.margeo.2009.09.003 CrossRefGoogle Scholar
  153. Masselink G, Castelle B, Scott T, Dodet G, Suanez S, Jackson D, Floc’h F (2016) Extreme wave activity during 2013/2014 winter and morphological impacts along the Atlantic coast of Europe. Geophys Res Lett 43:2135–2143.  https://doi.org/10.1002/2015GL067492 CrossRefGoogle Scholar
  154. Mastenbroek C, Burgers G, Janssen PAEM (1993) The dynamical coupling of a wave model and a storm surge model through the atmospheric boundary layer. J Phys Oceanogr 23:1856–1866CrossRefGoogle Scholar
  155. Matsuba Y, Sato S (2018) Nearshore bathymetry estimation using UAV. Coast Eng J 60:51–59.  https://doi.org/10.1080/21664250.2018.1436239 CrossRefGoogle Scholar
  156. McWilliams JC, Restrepo JM, Lane EM (2004) An asymptotic theory for the interaction of waves and currents in coastal waters. J Fluid Mech 511:135–178CrossRefGoogle Scholar
  157. Melet A, Almar R, Meyssignac B (2016) What dominates sea level at the coast: a case study for the Gulf of Guinea. Ocean Dyn 66:623–636CrossRefGoogle Scholar
  158. Melet A, Meyssignac B, Almar R, Le Cozannet G (2018) Under-estimated wave contribution to sea-level rise. Nat Clim Change 8:234–239CrossRefGoogle Scholar
  159. Melet A, Meyssignac B, Almar R, Le Cozannet G (2019) Reply to ‘’Waves do not contribute to global sea-level rise”. Nat Clim Change 9:3.  https://doi.org/10.1038/s41558-018-0378-4 CrossRefGoogle Scholar
  160. Menéndez M, Méndez FJ, Losada IJ, Graham NE (2008) Variability of extreme wave heights in the northeast Pacific Ocean based on buoy measurements. Geophys Res Lett.  https://doi.org/10.1029/2008GL035394 CrossRefGoogle Scholar
  161. Mentaschi L, Vousdoukas MI, Voukouvalas E, Dosio A, Feyen L (2017) Global changes of extreme coastal wave energy fluxes triggered by intensified teleconnection patterns. Geophys Res Lett 44:2416–2426.  https://doi.org/10.1002/2016GL072488 CrossRefGoogle Scholar
  162. Merrifield MA, Becker JM, Ford M, Yao Y (2014) Observations and estimates of wave-driven water level extremes at the Marshall Islands. Geophys Res Lett 41:7245–7253.  https://doi.org/10.1002/2014GL061005 CrossRefGoogle Scholar
  163. Morim J, Hemer M, Cartwright N, Strauss D, Andutta F (2018) On the concordance of 21st century wind-wave climate projections. Glob Planet Change 167:160–171.  https://doi.org/10.1016/j.gloplacha.2018.05.005 CrossRefGoogle Scholar
  164. Moura T, Baldock TE (2017) Remote sensing of the correlation between breakpoint oscillations and infragravity waves in the surf and swash zone. J Geophys Res Oceans 122(4):3106–3122CrossRefGoogle Scholar
  165. Munk WH, Traylor MA (1947) Refraction of ocean waves: a process linking underwater topography to beach erosion. J Geol LV:1–26CrossRefGoogle Scholar
  166. Munk WH, Miller GR, Snodgrass FE, Barber NF (1963) Directional recording of swell from distant storms. Phil Trans R Soc Lond Ser A Math Phys Eng Sci 255:505–584.  https://doi.org/10.1098/rsta.1963.0011 CrossRefGoogle Scholar
  167. Neumann B, Vafeidis AT, Zimmermann J, Nicholls RJ (2015) Future coastal population growth and exposure to sea-level rise and coastal flooding—a global assessment. PLoS ONE.  https://doi.org/10.1371/journal.pone.0118571 CrossRefGoogle Scholar
  168. Nicolae-Lerma A, Pedreros R, Senechal N (2016) Wave set-up and run-up variability on a complex barred beach during highly dissipative storm conditions. J Coast Res 75:882–886.  https://doi.org/10.2112/SI75-177.1 CrossRefGoogle Scholar
  169. Nicolae-Lerma A, Pedreros R, Robinet A, Sénéchal N (2017) Simulating wave setup and runup during storm conditions on a complex barred beach. Coast Eng 123:29–41CrossRefGoogle Scholar
  170. Nielsen P, DJ Hanslow (1991) Wave runup distributions on natural beaches. J Coast Res 1139–1152Google Scholar
  171. Nouguier F, Chapron B, Collard F, Mouche A, Rascle N, Ardhuin F, Wu X (2018) Sea surface kinematics from near-nadir radar measurements. IEEE Trans Geosci Remote Sens.  https://doi.org/10.1109/tgrs2018.2833200 CrossRefGoogle Scholar
  172. O’Reilly WC, Guza RT (1993) A comparison of two spectral wave models in the Southern California Bight. Coast Eng 19:263–282CrossRefGoogle Scholar
  173. Overeem I, Anderson RS, Wobus CW, Clow GD, Urban FE, Matell N (2011) Sea ice loss enhances wave action at the Arctic coast. Geophys Res Lett.  https://doi.org/10.1029/2011GL048681 CrossRefGoogle Scholar
  174. Ozer J, Padilla-Hernandez R, Monbaliub J, Fanjul EA, Albiach JCC, Osuna P, Yu JC, Wolf J (2000) A coupling module for tides, surges and waves. Coast Eng 41(1–3):95–124CrossRefGoogle Scholar
  175. Passarella M, Goldstein EB, De Muro S, Coco G (2018) The use of genetic programming to develop a predictor of swash excursion on sandy beaches. Nat Hazards Earth Syst Sci 18:599–611.  https://doi.org/10.5194/nhess-18-599-2018 CrossRefGoogle Scholar
  176. Passaro M, Fenoglio-Marc L, Cipollini P (2015) Validation of significant wave height from improved satellite altimetry in the German Bight. IEEE Trans Geosci Remote Sens 53:2146–2156CrossRefGoogle Scholar
  177. Pearson J, Bruce T, Allsop N (2001) Prediction of wave overtopping at steep seawalls—variabilities and uncertainties. Proc Waves 1:1797–1808Google Scholar
  178. Pedreros R, Idier D, Muller H, Lecacheux S, Paris F, Yates-Michelin M, Dumas F, Pineau-Guillou L, Sénéchal N (2018) Relative contribution of wave setup to the storm surge: observations and modeling based analysis in open and protected environments (Truc Vert beach and Tubuai island). In: Shim J-S, Chun I, Lim HS (eds) Proceedings from the international coastal symposium (ICS) 2018 (Busan, Republic of Korea). J Coast Res 85:1046–1050. Coconut Creek (Florida), ISSN 0749-0208Google Scholar
  179. Perez J, Menendez M, Camus P, Mendez FJ, Losada IJ (2015) Statistical multi-model climate projections of surface ocean waves in Europe. Ocean Model 96:161–170.  https://doi.org/10.1016/j.ocemod.2015.06.001 CrossRefGoogle Scholar
  180. Pianca C, Holman R, Siegle E (2015) Shoreline variability from days to decades: results of long-term video imaging. J Geophys Res Oceans 120(3):2159–2178CrossRefGoogle Scholar
  181. Poate TG, McCall RT, Masselink G (2016) A new parameterisation for runup on gravel beaches. Coast Eng 117:176–190.  https://doi.org/10.1016/j.coastaleng.2016.08.003 CrossRefGoogle Scholar
  182. Pomeroy A, Lowe R, Symonds G, Van Dongeren A, Moore C (2012) The dynamics of infragravity wave transformation over a fringing reef. J Geophys Res.  https://doi.org/10.1029/2012jc008310 CrossRefGoogle Scholar
  183. Poupardin A, Idier D, de Michele M, Raucoules D (2016) Water depth inversion from a single SPOT-5 dataset. IEEE Trans Geosci Remote Sens 54:2329–2342.  https://doi.org/10.1109/TGRS2015.2499379 CrossRefGoogle Scholar
  184. Powell KA (1990) Predicting short term profile response for shingle beaches. Hydraulics Research Limited, Wallingford, Oxfordshire. Report SR2 19Google Scholar
  185. Power HE, Gharabaghi B, Bonakdari H, Robertson B, Atkinson AL, Baldock TE (2019) Prediction of wave runup on beaches using Gene-Expression Programming and empirical relationships. Coast Eng 144:47–61CrossRefGoogle Scholar
  186. Pullen T, Allsop N, Bruce T, Kortenhaus A, Schüttrumpf H, Van der Meer J (2007) EurOtop wave overtopping of sea defences and related structures: assessment manual. Environ Agency, UKGoogle Scholar
  187. Purkis SJ (2018) Remote sensing tropical coral reefs: the view from above. Ann Rev Mar Sci 10(1):149–168.  https://doi.org/10.1146/annurev-marine-121916-063249 CrossRefGoogle Scholar
  188. Quilfen Y, Yurovskaya M, Chapron B, Ardhuin F (2018) Storm waves sharpening in the Agulhas current: satellite observations and modeling. Remote Sens Environ 216:561–571.  https://doi.org/10.1016/j.rse.2018.07.020 CrossRefGoogle Scholar
  189. Ranasinghe R (2016) Assessing climate change impacts on open sandy coasts: a review. Earth-Sci Rev 160:320–332.  https://doi.org/10.1016/j.earscirev.2016.07.011 CrossRefGoogle Scholar
  190. Raubenheimer B, Guza R, Elgar S (2001) Field observations of wave-driven setdown and setup. J Geophys Res Oceans 106(C3):4629–4638CrossRefGoogle Scholar
  191. Raucoules D, de Michele M, Idier D, Smai F, Foumelis M, Boulahya F, Volden E, Drakopoulou V, Przemysław M (2019) BATHYSENT—a method to retrieve coastal bathymetry from sentinel-2). In: IEEE international geoscience and remote sensing symposium (IGARSS)Google Scholar
  192. Rawat A, Ardhuin F, Ballu V, Crawford W, Corela C, Aucan J (2014) Infragravity waves across the oceans. Geophys Res Lett 41(22):7957–7963.  https://doi.org/10.1002/2014GL061604 CrossRefGoogle Scholar
  193. Rhein M et al (2013) Observations: ocean. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 255–316.  https://doi.org/10.1017/cbo9781107415324.010
  194. Roberts TM, Wang P, Kraus NC (2010) Limits of wave runup and corresponding beach-profile change from large-scale laboratory data. J Coast Res 26:184–198CrossRefGoogle Scholar
  195. Roelvink D, Reniers A, van Dongeren A, van Thiel de Vries J, McCall R, Lescinski J (2009) Modelling storm impacts on beaches, dunes and barrier islands. Coast Eng 56:1133–1152.  https://doi.org/10.1016/j.coastaleng.2009.08.006 CrossRefGoogle Scholar
  196. Roelvink D, McCall R, Mehvar S, Nederhoff K, Dastgheib A (2018) Improving predictions of swash dynamics in XBeach: the role of groupiness and incident-band runup. Coast Eng 134:103–123.  https://doi.org/10.1016/j.coastaleng.2017.07.004 CrossRefGoogle Scholar
  197. Rohmer J, Idier D (2012) A meta-modelling strategy to identify the critical offshore conditions for coastal flooding. Nat Hazards Earth Syst Sci 12:2943–2955.  https://doi.org/10.5194/nhess-12-2943-2012 CrossRefGoogle Scholar
  198. Rohmer J, Lecacheux S, Pedreros R et al (2016) Dynamic parameter sensitivity in numerical modelling of cyclone-induced waves: a multi-look approach using advanced meta-modelling techniques. Nat Hazards 84:1765.  https://doi.org/10.1007/s11069-016-2513-8 CrossRefGoogle Scholar
  199. Roland A, Ardhuin F (2014) On the developments of spectral wave models: numerics and parameterizations for the coastal ocean. Ocean Dyn 64(6):833–846.  https://doi.org/10.1007/s10236-014-0711-z CrossRefGoogle Scholar
  200. Romano A, Bellotti G, Briganti R, Franco L (2015) Uncertainties in the physical modelling of the wave overtopping over a rubble mound breakwater: the role of the seeding number and of the test duration. Coast Eng 103:15–21.  https://doi.org/10.1016/j.coastaleng.2015.05.005 CrossRefGoogle Scholar
  201. Romeiser R, Graber HC (2018) Advanced ocean wave retrieval from time series of spotlight SAR subaperture images, EUSAR 2018. In: 12th European conference on synthetic aperture radarGoogle Scholar
  202. Rueda A, Gouldby B, Méndez F, Tomás A, Losada I, Lara J, Díaz-Simal P (2016) Coastal flood risk assessment. J Flood Risk Manag 9:390–401.  https://doi.org/10.1111/jfr3.12204 CrossRefGoogle Scholar
  203. Rueda A, Vitousek S, Camus P, Tomas A, Epejo A, Losada IJ, Barnard P, Erikson L, Ruggiero P, Reguero BG, Mendez FJ (2017) A global classification of coastal flood hazard climates associated with large-scale oceanographic forcing. Sci Rep 7:5038CrossRefGoogle Scholar
  204. Ruessink BG (2010) Observations of turbulence within a natural surf zone. J Phys Oceanogr 40:2696–2712.  https://doi.org/10.1175/2010JPO4466.1 CrossRefGoogle Scholar
  205. Ruessink BG, Kleinhans MG, van den Beukel PGL (1998) Observations of swash under highly dissipative conditions. J Geophys Res 103:3111–3118.  https://doi.org/10.1029/97JC02791 CrossRefGoogle Scholar
  206. Ruggiero P, Komar PD, Marra JJ, McDougal WG, Beach RA (2001) Wave runup, extreme water levels and the erosion of properties backing beaches. J Coastal Res 17:407–419Google Scholar
  207. Ruggiero P, Holman R, Beach R (2004) Wave run-up on a high-energy dissipative beach. J Geophys Res C Oceans 109(6):C06025, 1–12.  https://doi.org/10.1029/2003jc002160
  208. Ruggiero P, Komar PD, Allan JC (2010) Increasing wave heights and extreme value projections: the wave climate of the U.S. Pacific Northwest. Coast Eng 57:539–552.  https://doi.org/10.1016/j.coastaleng.2009.12.005 CrossRefGoogle Scholar
  209. Rusu L, Bernardino M, Guedes Soares C (2011) Modelling the influence of currents on wave propagation at the entrance of the Tagus estuary. Ocean Eng 38(10):1174–1183.  https://doi.org/10.1016/j.oceaneng.2011.05.016 CrossRefGoogle Scholar
  210. Saville T (1961) Experimental determination of wave set-up. In: Proceedings of the second technical conference on hurricanes, US Dept. of Commerce, National Hurricane Res. Proj, 1961, pp 242–252Google Scholar
  211. Semedo A, Sušelj K, Rutgersson A, Sterl A (2010) A global view on the wind sea and swell climate and variability from ERA-40. J Clim 24:1461–1479.  https://doi.org/10.1175/2010JCLI3718.1 CrossRefGoogle Scholar
  212. Send U, Weller RA, Wallace D, Chavez F, Lampitt R, Dickey T, Honda M, Nittis K, Lukas R, McPhaden M, Feely R (2010) OceanSITES. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, Vol. 2. European Space Agency, pp 913–922Google Scholar
  213. Senechal N, Coco G, Bryan KR, Holman RA (2011) Wave runup during extreme storm conditions. J Geophys Res 116:C07032.  https://doi.org/10.1029/2010JC006819 CrossRefGoogle Scholar
  214. Seneviratne SI et al (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Field CB, Barros V, Stocker TF, Dahe Q (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge University Press, Cambridge, pp 109–230.  https://doi.org/10.1017/cbo9781139177245.006
  215. Sepulveda HH, Queffeulou P, Ardhuin F (2015) Assessment of SARAL AltiKa wave height measurements relative to buoy, Jason-2 and Cryosat-2 data. Mar Geodesy 38(S1):449–465.  https://doi.org/10.1080/01490419.2014.1000470 CrossRefGoogle Scholar
  216. Serafin KA, Ruggiero P, Stockdon HF (2017) The relative contribution of waves, tides, and nontidal residuals to extreme total water levels on US West Coast sandy beaches. Geophys Res Lett 44:1839–1847Google Scholar
  217. Sheremet A, Staples T, Ardhuin F, Suanez S, Fichaut B (2014) Observations of large infragravity-wave run-up at Banneg island, France. Geophys Res Lett.  https://doi.org/10.1002/2013gl058880 CrossRefGoogle Scholar
  218. Smit PB, Janssen TT, Herbers THC, Taira T, Romanowicz BA (2018) Infragravity wave radiation across the shelf break. J Geophys Res Oceans 123:4483–4490.  https://doi.org/10.1029/2018JC013986 CrossRefGoogle Scholar
  219. Smith JA (2006) Wave-current interactions in finite-depth. J Phys Oceanogr 36:1403–1419CrossRefGoogle Scholar
  220. Stewart AL, Ferrari R, Thompson AF (2013) On the importance of surface forcing in conceptual models of the deep ocean. J Phys Oceanogr 44:891–899.  https://doi.org/10.1175/JPO-D-13-0206.1 CrossRefGoogle Scholar
  221. Stockdon HF, Holman RA, Howd PA, Sallenger AH Jr (2006) Empirical parameterization of setup, swash, and runup. Coast Eng 53:573–588.  https://doi.org/10.1016/j.coastaleng.2005.12.005 CrossRefGoogle Scholar
  222. Stockdon HF, Thompson DM, Plant NG, Long JW (2014) Evaluation of wave runup predictions from numerical and parametric models. Coast Eng 92:1–11CrossRefGoogle Scholar
  223. Stopa JE, Ardhuin F, Girard-Ardhuin F (2016) Wave climate in the Arctic 1992-2014: seasonality and trends. Cryosphere 10:1605–1629.  https://doi.org/10.5194/tc-10-1605-2016 CrossRefGoogle Scholar
  224. Stopa JE, Ardhuin F, Stutzmann E, Lecocq T (2019) Sea state trends and variability: consistency between models, altimeters, buoys, and seismic data (1979–2016). J Geophys Res Oceans.  https://doi.org/10.1029/2018JC014607 CrossRefGoogle Scholar
  225. Suanez S, Cancouët R, Floc’h F, Blaise E, Ardhuin F, Filipot J.-F, Cariolet J.-M, Delacourt C (2015) Observations and predictions of wave runup, extreme water levels, and medium-term dune erosion during storm conditions. J Mar Sci Eng 3:674–698.  https://doi.org/10.3390/jmse3030674 CrossRefGoogle Scholar
  226. Suzuki N, Fox-Kemper B (2016) Understanding Stokes forces in the wave-averaged equations. J Geophys Res Oceans 121:3579–3596.  https://doi.org/10.1002/2015JC011566 CrossRefGoogle Scholar
  227. Symonds G, Huntley DA, Bowen AJ (1982) Two-dimensional surf beat: long wave generation by a time-varying breakpoint. J Geophys Res Oceans 87:492–498.  https://doi.org/10.1029/JC087iC01p00492 CrossRefGoogle Scholar
  228. The WAVEWATCH III R Development Group (2016) User manual and system documentation of WAVEWATCH III R version 5.16,” Tech. Note 329, NOAA/NWS/NCEP/MMAB, College Park, MD, USA, 2016. 326 pp. + AppendicesGoogle Scholar
  229. Thomson J (2012) Wave breaking dissipation observed with ”swift” drifters. J Atmos Ocean Technol 29:1866–1882.  https://doi.org/10.1175/JTECH-D-12-00018.1 CrossRefGoogle Scholar
  230. Thompson RORY, Hamon BV (1980) Wave setup of harbor water levels. J Geophys Res Oceans 85:1151–1152.  https://doi.org/10.1029/JC085iC02p01151 CrossRefGoogle Scholar
  231. Thornton EB, Guza RT (1983) Transformation of wave height distribution. J Geophys Res Oceans 88:5925–5938.  https://doi.org/10.1029/JC088iC10p05925 CrossRefGoogle Scholar
  232. Torres-Freyermuth A, Puleo JA, Pokrajac D (2013) Modeling swash-zone hydrodynamics and shear stresses on planar slopes using reynolds-averaged navierstokes equations. J Geophys Res 118:1019–1033.  https://doi.org/10.1002/jgrc.20074 CrossRefGoogle Scholar
  233. Tuah H, Hudspeth RT (1982) Comparisons of numerical random sea simulations. J Waterw Port Coast Ocean Div ASCE 108(4):569–584Google Scholar
  234. Turner IL, Harley MD, Drummond CD (2016) UAVs for coastal surveying. Coast Eng 114:19–24.  https://doi.org/10.1016/j.coastaleng.2016.03.011 CrossRefGoogle Scholar
  235. Van der Meer JW, Stam C-JM (1992) Wave runup on smooth and rock slopes of coastal structures. J Waterw Port Coast Ocean Eng 118:534–550.  https://doi.org/10.1061/(ASCE)0733-950X(1992)118:5(534) CrossRefGoogle Scholar
  236. Vitousek S, Barnard PL, Fletcher CH, Frazer N, Erikson L, Storlazzi CD (2017) Doubling of coastal flooding frequency within decades due to sea-level rise. Nature 7:1399Google Scholar
  237. Vousdoukas MI, Velegrakis AF, Dimou K, Zervakis V, Conley DC (2009) Wave run-up observations in microtidal, sediment-starved pocket beaches of the Eastern Mediterranean. J Mar Syst 78:S37–S47CrossRefGoogle Scholar
  238. Vousdoukas MI, Wziatek D, Almeida LP (2012) Coastal vulnerability assessment based on video wave run- up observations at a mesotidal, steep-sloped beach. Ocean Dyn 62(1):123–137CrossRefGoogle Scholar
  239. Vousdoukas MI et al (2016) Developments in large-scale coastal flood hazard mapping. Nat Hazards Earth Syst Sci 16:1841–1853CrossRefGoogle Scholar
  240. Vousdoukas MI, Mentaschi L, Voukouvalas E, Verlaan M, Feyen L (2017) Extreme sea levels on the rise along Europe’s coasts. Earth’s Future 5:304–323CrossRefGoogle Scholar
  241. Vousdoukas MI, Mentaschi L, Voukouvalas E, Verlaan M, Jevrejeva S, Jackson LP, Feyen L (2018a) Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat Commun 9:2360CrossRefGoogle Scholar
  242. Vousdoukas MI, Mentaschi L, Voukouvalas E, Bianchi A, Dottori F, Feyen L (2018b) Climatic and socioeconomic controls of future coastal flood risk in Europe. Nat Clim Change 8:776–780CrossRefGoogle Scholar
  243. Walstra DJR, Roelvink J, Groeneweg J (2000) Calculation of wave-driven currents in a 3D mean flow model. In: Proceedings of the 27th international conference on coastal engineering, Sydney, vol 2, pp 1050–1063, ASCE, 2000Google Scholar
  244. Wandres M, Pattiaratchi C, Hemer MA (2017) Projected changes of the southwest Australian wave climate under two atmospheric greenhouse gas concentration pathways. Ocean Model 117:70–87CrossRefGoogle Scholar
  245. Wang XL, Swail VR (2001) Changes in extreme wave heights in Northern Hemisphere oceans and related atmospheric circulation regimes. J Clim 14:2204–2221.  https://doi.org/10.1175/1520-0442(2001)014,2204:COEWHI2.0.CO;2 CrossRefGoogle Scholar
  246. Wang XL, Swail VR (2006) Climate change signal and uncertainty in projections of ocean wave heights. Clim Dyn 26:109–126.  https://doi.org/10.1007/s00382-005-0080-x CrossRefGoogle Scholar
  247. Wang XL, Feng Y, Swail VR (2014) Changes in global ocean wave heights as projected using multimodel CMIP5 simulations. Geophys Res Lett 41:1026–1034.  https://doi.org/10.1002/2013GL058650 CrossRefGoogle Scholar
  248. Wassing F (1957) Model investigation on wave run-up carried out in the Netherlands during the past twenty years. In: Proccedings of the 6th international coastal engineering conference, American Society of Civil Engineers, pp 700–714Google Scholar
  249. Wenneker I, Spelt B, Peters H, de Ronde J (2016) Overview of 20 years of field measurements in the coastal zone and at the Petten sea dike in the Netherlands. Coast Eng 109:96–113.  https://doi.org/10.1016/j.coastaleng.2015.12.009 CrossRefGoogle Scholar
  250. Williams HE, Briganti R, Pullen T (2014) The role of offshore boundary conditions in the uncertainty of numerical prediction of wave overtopping using non-linear shallow water equations. Coas En 89:30–44.  https://doi.org/10.1016/j.coastaleng.2014.03.003 CrossRefGoogle Scholar
  251. WISE Group (2007) Wave modelling—the state of the art. Prog Oceanogr 75:603–674.  https://doi.org/10.1016/j.pocean.2007.05.005 CrossRefGoogle Scholar
  252. Woodworth PL, Melet A, Marcos M, Ray RD, Wöppelmann G, Sasaki YN, Cirano M, Hibbert A, Huthnance JM, Monserrat S, Merrifield MA (2019) Forcing factors affecting sea level changes at the coast. Surv Geophys.  https://doi.org/10.1007/s10712-019-09531-1 CrossRefGoogle Scholar
  253. Wong PP et al. In: Climate change 2014: impacts, adaptation, and vulnerability. Field CB et al (eds). IPCC, Cambridge Univ. Press, pp 361–409Google Scholar
  254. Wright LD, Short AD (1984) Morphodynamic variability of surf zones and beaches: a synthesis. Mar Geol 56:93–118CrossRefGoogle Scholar
  255. Young IR, Ribal A (2019) Multiplatform evaluation of global trends in wind speed and wave height. Science 364:548.  https://doi.org/10.1126/science.aav9527 CrossRefGoogle Scholar
  256. Young IR, Zieger S, Babanin AV (2011) Global trends in wind speed and wave height. Science 332:451–455.  https://doi.org/10.1126/science.1197219 CrossRefGoogle Scholar
  257. Zhang WZ, Shi F, Hong HS, Shang SP, Kirby JT (2010) Tide-surge Interaction Intensified by the Taiwan Strait. J Geophys Res 115:C06012.  https://doi.org/10.1029/2009JC005762 CrossRefGoogle Scholar
  258. Zijlema M, Stelling G, Smit P (2011) Swash: an operational public domain code for simulating wave fields and rapidly varied flows in coastal waters. Coast Eng 58:992–1012.  https://doi.org/10.1016/j.coastaleng.2011.05.015 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.UMR 6253 LOPSCNRS-Ifremer-IRD-Univiversity of Brest BrestPlouzanéFrance
  2. 2.Mercator OceanRamonville Saint AgneFrance
  3. 3.UMR 7266 LIENSs, CNRS - La Rochelle UniversityLa RochelleFrance
  4. 4.BRGMOrléans CédexFrance
  5. 5.UMR 5566 LEGOSToulouse Cédex 9France

Personalised recommendations