Advertisement

The Ability of Barotropic Models to Simulate Historical Mean Sea Level Changes from Coastal Tide Gauge Data

  • C. G. PiecuchEmail author
  • F. M. Calafat
  • S. Dangendorf
  • G. Jordà
Article

Abstract

The nature of mean sea level variation over the global coastal ocean is considered based on 219 historical tide gauge records and three barotropic ocean circulation models forced by reanalysis surface air pressure and wind stress. The consistency of the models and their ability to reproduce the data are considered on nonseasonal timescales (seasonal cycles and linear trends removed) from bimonthly to multidecadal over 1900–2010. Models consistently simulate stronger sea level variability at higher latitude, higher frequency, between winters, and over broad shallow shelves and semi-enclosed marginal seas; standard deviations in modeled monthly sea level grow from 1–2 cm on average at low latitude (0°–30°) to 5–10 cm at high latitude (60°–90°), with larger values simulated over some shelf areas (e.g., North Sea). Models are more consistent over narrow shelf regions adjacent to deep basins and less consistent along the broad shallow continental shelf. On monthly timescales, discrepancies between models arise mostly from differences in model configuration (e.g., fine vs. coarse horizontal resolution), whereas model configuration and surface forcing (i.e., choice of atmospheric reanalysis) contribute comparably to model differences on annual timescales. Model solutions become more uncertain at earlier times (e.g., prior to 1950). The models show more skill explaining variance in tide gauge data at higher latitude, higher frequency, between winters, and over broad shallow shelves and within semi-enclosed marginal seas; at middle and high latitudes (poleward of 45°), model sea level solutions on average explain 30–50% of the monthly variance and 35–70% of the variance from one winter to the next in the tide gauge data records. Statistically significant relationships between the model solutions and observational data persist on long decadal periods. The relative skill of individual models is sensitive to region and timescale, such that no one model considered here consistently performs better than the others in all cases. Results suggest that barotropic models are useful for reducing noise in tide gauge records for studies of sea level rise and motivate additional model comparison studies in the context of sea level extremes.

Keywords

Coastal sea level Climate change and variability Barotropic modeling Wind forcing Inverted barometer 

Notes

Acknowledgements

This work was supported by National Science Foundation awards OCE-1558966 and OCE-1834739 as well as the J. Lamar Worzel Assistant Scientist Fund and the Penzance Endowed Fund in Support of Assistant Scientists at the Woods Hole Oceanographic Institution. This paper is an outcome of the ISSI Workshop on, “Understanding the Relationship between Coastal Sea Level and Large-Scale Ocean Circulation,” held on 5–9 March 2018 in Bern, Switzerland. Helpful comments from Magdalena Andres and an anonymous reviewer are acknowledged.

References

  1. Adcroft A, Hill C, Marshall J (1997) Representation of topography by shaved cells in a height coordinate ocean model. Mon Weather Rev 125:2293–2315CrossRefGoogle Scholar
  2. Andres M, Gawarkiewicz GG, Toole JM (2013) Interannual sea level variability in the western North Atlantic: regional forcing and remote response. Geophys Res Lett 40:5915–5919.  https://doi.org/10.1002/2013GL058013 CrossRefGoogle Scholar
  3. Bingham RJ, Hughes CW (2008) The relationship between sea-level and bottom pressure variability in an eddy permitting ocean model. Geophys Res Lett 35:L03602CrossRefGoogle Scholar
  4. Bos MS, Williams SDP, Araújo IB, Bastos L (2014) The effect of temporal correlated noise on the sea level rate and acceleration uncertainty. Geophys J Int 196:1423–1430.  https://doi.org/10.1093/gji/ggt481 CrossRefGoogle Scholar
  5. Calafat FM, Chambers DP (2013) Quantifying recent acceleration in sea level unrelated to internal climate variability. Geophys Res Lett 40:3661–3666.  https://doi.org/10.1002/grl.50731 CrossRefGoogle Scholar
  6. Calafat FM, Chambers DP, Tsimplis MN (2012) Mechanisms of decadal sea level variability in the eastern North Atlantic and the Mediterranean Sea. J Geophys Res 117:C09022.  https://doi.org/10.1029/2012JC008285 Google Scholar
  7. Calafat FM, Chambers DP, Tsimplis MN (2013) Inter-annual to decadal sea-level variability in the coastal zones of the Norwegian and Siberian Seas: the role of atmospheric forcing. J Geophys Res Oceans 117:1287–1301.  https://doi.org/10.1002/jgrc.20106 CrossRefGoogle Scholar
  8. Calafat FM, Chambers DP, Tsimplis MN (2014a) On the ability of global sea level reconstructions to determine trends and variability. J Geophys Res Oceans 119:1572–1592.  https://doi.org/10.1002/2013JC009298 CrossRefGoogle Scholar
  9. Calafat FM, Avgoustoglou E, Jordà G, Flocas H, Zodiatis G, Tsimplis MN, Kouroutzoglou J (2014b) The ability of a barotropic model to simulate sea level extremes of meteorological origin in the Mediterranean Sea, including those caused by explosive cyclones. J Geophys Res Oceans 119:7840–7853CrossRefGoogle Scholar
  10. Carrère L, Lyard F (2003) Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing: comparisons with observations. Geophys Res Lett 30(6):1275.  https://doi.org/10.1029/2002GL016473 CrossRefGoogle Scholar
  11. Chepurin GA, Carton JA, Leuliette E (2014) Sea level in ocean reanalyses and tide gauges. J Geophys Res Oceans 119:147–155.  https://doi.org/10.1002/2013JC009365 CrossRefGoogle Scholar
  12. Clarke AJ, Liu X (1994) Interannual sea level in the northern and eastern Indian Ocean. J Phys Oceanogr 24:1224–1235CrossRefGoogle Scholar
  13. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli Ø, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28.  https://doi.org/10.1002/qj.776 CrossRefGoogle Scholar
  14. Csanady GT (1982) Circulation in the coastal ocean. D. Reidel Publishing Compeny, Dordrecht, p 279CrossRefGoogle Scholar
  15. Dangendorf S, Mudersbach C, Wahl T, Jensen J (2013) Characteristics of intra-, inter-annual and decadal sea-level variability and the role of meteorological forcing: the long record of Cuxhaven. Ocean Dyn 63:209–224.  https://doi.org/10.1007/s10236-013-0598-0 CrossRefGoogle Scholar
  16. Dangendorf S, Rybski D, Mudersbach C, Müller A, Kaufmann E, Zorita E, Jensen J (2014a) Evidence for long-term memory in sea level. Geophys Res Lett 41:5530–5537.  https://doi.org/10.1002/2014GL060538 CrossRefGoogle Scholar
  17. Dangendorf S, Müller-Navarra S, Jensen J, Schenk F, Wahl T, Weisse R (2014b) North Sea storminess from a novel storm surge record since AD 1843. J Climate 27:3582–3595CrossRefGoogle Scholar
  18. Dangendorf S, Marcos M, Müller M, Zorita E, Riva R, Berk K, Jense J (2015) Detecting anthropogenic footprints in sea level rise. Nat Commun 6:7849.  https://doi.org/10.1038/ncomms8849 CrossRefGoogle Scholar
  19. Dangendorf S, Marcos M, Wöppelmann G, Conrad CP, Frederikse T, Riva R (2017) Reassessment of 20th century global mean sea level rise. Proc Natl Acad Sci USA 114(23):5946–5951.  https://doi.org/10.1073/pnas.1616007114 CrossRefGoogle Scholar
  20. Featherstone WE, Penna NT, Filmer MS, Williams SDP (2015) Nonlinear subsidence at Fremantle, a long-recording tide gauge in the Southern Hemisphere. Geophys Res Lett 120:7004–7014.  https://doi.org/10.1002/2015JC011295 CrossRefGoogle Scholar
  21. Feng M, Li Y, Meyers G (2004) Multidecadal variations of Fremantle sea level: footprint of climate variability in the tropical Pacific. Geophys Res Lett 31:L16302.  https://doi.org/10.1029/2004GL019947 CrossRefGoogle Scholar
  22. Field CR, Bayard TS, Gjerdrum C, Hill JM, Meiman S, Elphick CS (2017) High-resolution tide projections reveal extinction threshold in response to sea-level rise. Glob Change Biol 23:2058–2070.  https://doi.org/10.1111/gcb.13519 CrossRefGoogle Scholar
  23. Forget G, Campin J-M, Heimbach P, Hill CN, Ponte RM, Wunsch C (2015) ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci Model Dev 8:3071–3104.  https://doi.org/10.5194/gmd-8-3071-2015 CrossRefGoogle Scholar
  24. Forsyth J, Gawarkiewicz G, Andres M, Chen K (2018) The interannual variability of the breakdown of fall stratification on the New Jersey shelf. J Geophys Res Oceans.  https://doi.org/10.1029/2018JC014049 Google Scholar
  25. Frankignoul C, Müller P, Zorita E (1997) A simple model of the decadal response of the ocean to stochastic wind forcing. J Phys Oceanogr 27:1533–1546CrossRefGoogle Scholar
  26. Frederikse T, Simon K, Katsman CA, Riva R (2017) The sea-level budget along the Northwest Atlantic coast: GIA, mass changes, and large-scale ocean dynamics. J Geophys Res Oceans 122:5486–5501.  https://doi.org/10.1002/2017JC012699 CrossRefGoogle Scholar
  27. Fukumori I, Wang O, Llovel W, Fenty I, Forget G (2015) A near-uniform fluctuation of ocean bottom pressure and sea level across the deep ocean basins of the Arctic Ocean and the Nordic Seas. Prog Oceanogr 134:152–172CrossRefGoogle Scholar
  28. Gill AE (1982) Atmosphere-ocean dynamics. Academic Press, New York, p 662Google Scholar
  29. Gill AE, Niiler PP (1973) The theory of the seasonal variability in the ocean. Deep See Res 20:141–177Google Scholar
  30. Gille ST (2004) How nonlinearities in the equation of state of seawater can confound estimates of steric sea level change. J Geophys Res 109:C03005.  https://doi.org/10.1029/2003JC002012 CrossRefGoogle Scholar
  31. Gomis D, Tsimplis MN, Martín-Míguez B, Ratsimandresy AW, García-Lafuente J, Josey SA (2006) Mediterranean Sea level and barotropic flow through the Strait of Gibraltar for the period 1958–2001 and reconstructed since 1659. J Geophys Res 111:C11005.  https://doi.org/10.1029/2005JC003186 CrossRefGoogle Scholar
  32. Gomis D, Ruiz S, Sotillo MG, Álvarez-Fanjul E, Terradas J (2008) Low frequency Mediterranean sea level variability: the contribution of atmospheric pressure and wind. Glob Planet Change 63:215–229CrossRefGoogle Scholar
  33. Gonneea ME, Mulligan AE, Charette MA (2013) Climate-driven sea level anomalies modulate coastal groundwater dynamics and discharge. Geophys Res Lett 40:2701–2706.  https://doi.org/10.1002/grl.50192 CrossRefGoogle Scholar
  34. Greatbatch RJ, Lu Y, de Young B (1996) Application of a barotropic model to North Atlantic synoptic sea level variability. J Mar Res 54:451–469CrossRefGoogle Scholar
  35. Haigh ID, Wahl T, Rohling EJ, Price RM, Pattiaratchi CB, Calafat FM, Dangendorf S (2014) Timescales for detecting a significant acceleration in sea level rise. Nat Commun 5:3635.  https://doi.org/10.1038/ncomms4635 CrossRefGoogle Scholar
  36. Hay CC, Morrow E, Kopp RE, Mitrovica JX (2015) Probabilistic reanalysis of twentieth-century sea-level rise. Nature 517:481–484CrossRefGoogle Scholar
  37. Holgate SJ, Matthews A, Woodworth PL, Rickards LJ, Tamisiea ME, Bradshaw E, Foden PR, Gordon KM, Jevrejeva S, Pugh J (2013) New data systems and products at the permanent service for mean sea level. J Coast Res 29(3):493–504Google Scholar
  38. Holton JR (1992) An introduction to dynamic meteorology. Academic Press, San Diego, p 507Google Scholar
  39. Horton BP, Kopp RE, Garner AJ, Hay CC, Khan NS, Roy K, Shaw TA (2018) Mapping sea-level change in time, space, and probability. Annu Rev Environ Resour.  https://doi.org/10.1146/annurev-environ-102017-025826 Google Scholar
  40. Jordà G, Marbà N, Duarte CM (2012a) Mediterranean seagrass vulnerable to regional climate warming. Nat Clim Change 2:821–824CrossRefGoogle Scholar
  41. Jordà G, Gomis D, Álvarez-Fanjul E, Somot S (2012b) Atmospheric contribution to Mediterranean and nearby Atlantic sea level variability under different climate change scenarios. Glob Planet Change 80–81:198–214CrossRefGoogle Scholar
  42. Karegar MA, Dixon TH, Engelhart SE (2016) Subsidence along the Atlantic Coast of North America: insights from GPS and late Holocene relative sea level data. Geophys Res Lett 43:3126–3133.  https://doi.org/10.1002/2016GL068015 CrossRefGoogle Scholar
  43. Kenigson JS, Han W, Rajagopalan B, Yanto Jasinski M (2018) Decadal shift of NAO-linked interannual sea level variability along the U.S. Northeast Coast J Clim 31:4981–4989Google Scholar
  44. Kundu PK, Cohen IM (2004) Fluid mechanics, 3rd edn. Elsevier Academic Press, Amsterdam, p 759Google Scholar
  45. Kopp RE, Hay CC, Little CM, Mitrovica JX (2015) Geographic variability of sea-level change. Curr Clim Change Rep 1(3):192–204CrossRefGoogle Scholar
  46. Krueger O, Schenk F, Feser F, Weisse R (2013) Inconsistencies between long-term trends in storminess derived from the 20CR reanalysis and observations. J Clim 26:868–874CrossRefGoogle Scholar
  47. Laloyaux P, Balmaseda M, Dee D, Mogensen K, Janssen P (2016) A coupled data assimilation system for climate reanalysis. Q J R Meteorol Soc 142:65–78.  https://doi.org/10.1002/qj.2629 CrossRefGoogle Scholar
  48. Marcos M, Tsimplis MN (2007) Forcing of coastal sea level rise patterns in the North Atlantic and the Mediterranean Sea. Geophys Res Lett 34:L18604.  https://doi.org/10.1029/2007GL030641 CrossRefGoogle Scholar
  49. Marcos M, Tsimplis MN (2008) Coastal sea level trends in Southern Europe. Geophys J Int 175:70–82.  https://doi.org/10.1111/j.1365-246X.2008.03892.x CrossRefGoogle Scholar
  50. Marcos M, Calafat FM, Berihuete Á, Dangendorf S (2015) Long-term variations in global sea level extremes. J Geophys Res Oceans 120:8115–8134.  https://doi.org/10.1002/2015JC011173 CrossRefGoogle Scholar
  51. Marshall J, Adcroft A, Hill C, Perelman L, Heisey C (1997) A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J Geophys Res 102(C3):5753–5766.  https://doi.org/10.1029/96JC02775 CrossRefGoogle Scholar
  52. Merrifield MA, Thompson PR (2018) Interdecadal sea level variations in the Pacific: distinctions between the tropics and extratropics. Geophys Res Lett.  https://doi.org/10.1029/2018GL077666 Google Scholar
  53. Milne GA, Gehrels WR, Hughes CW, Tamisiea MA (2009) Identifying the causes of sea-level change. Nat Geosci 2:471–478CrossRefGoogle Scholar
  54. Pascual A, Marcos M, Gomis D (2008) Comparing the sea level response to pressure and wind forcing of two barotropic models: validation with tide gauge and altimetry data. J Geophys Res 113:C07011.  https://doi.org/10.1029/2007JC004459 CrossRefGoogle Scholar
  55. Pedlosky J (1987) Geophysical fluid dynamics, 2nd edn. Springer, New York, p 710CrossRefGoogle Scholar
  56. Peixoto JP, Oort AH (1992) Physics of Climate. American Institute of Physics, New York, p 520Google Scholar
  57. Philander SGH (1978) Forced oceanic waves. Rev Geophys 16(1):15–46CrossRefGoogle Scholar
  58. Piecuch CG, Ponte RM (2014) Mechanisms of global-mean steric sea level change. J Clim 27:824–834CrossRefGoogle Scholar
  59. Piecuch CG, Ponte RM (2015a) Inverted barometer contributions to recent sea level changes along the northeast coast of North America. Geophys Res Lett 42:5918–5925.  https://doi.org/10.1002/2015GL064580 CrossRefGoogle Scholar
  60. Piecuch CG, Ponte RM (2015b) A wind-driven nonseasonal barotropic fluctuation of the Canadian inland seas. Ocean Sci 11:175–185.  https://doi.org/10.5194/os-11-175-2015 CrossRefGoogle Scholar
  61. Piecuch CG, Fukumori I, Ponte RM, Wang O (2015) Vertical structure of ocean pressure variations with application to satellite-gravimetric observations. J Atmos Ocean Technol 32:603–613CrossRefGoogle Scholar
  62. Piecuch CG, Dangendorf S, Ponte RM, Marcos M (2016a) Annual sea level changes on the North American Northeast Coast: influence of local winds and barotropic motions. J Clim 29:4801–4816CrossRefGoogle Scholar
  63. Piecuch CG, Thompson PR, Donohue KA (2016b) Air pressure effects on sea level changes during the twentieth century. J Geophys Res Oceans 121:7917–7930.  https://doi.org/10.1002/2016JC012131 CrossRefGoogle Scholar
  64. Poli P, Hersbach H, Tan D, Dee D, Thépaut J-N, Simmons A, Peubey C, Laloyaux P, Komori T, Berrisford P, Dragani R, Trémolet Y, Hólm E, Bonavita M, Isaksen L, Fisher M (2013) The data assimilation system and initial performance evaluation of the ECMWF pilot reanalysis of the 20th-century assimilating surface observations only (ERA-20C). ERA report series 14Google Scholar
  65. Ponte RM (1992) The sea level response of a stratified ocean to barometric pressure forcing. J Phys Oceanogr 22:109–113CrossRefGoogle Scholar
  66. Ponte RM (1993) Variability in a homogeneous global ocean forced by barometric pressure. Dyn Atmos Oceans 18:209–234CrossRefGoogle Scholar
  67. Ponte RM (1994) Understanding the relation between wind- and pressure-driven sea level variability. J Geophys Res 99(C4):8033–8039CrossRefGoogle Scholar
  68. Ponte RM (2006) Low-frequency sea level variability and the inverted barometer effect. J Atmos Ocean Technol 23:619–629CrossRefGoogle Scholar
  69. Ponte RM, Dorandeu J (2003) Uncertainties in ECMWF surface pressure fields over the ocean in relation to sea level analysis and modeling. J Atmos Ocean Technol 20:301–307CrossRefGoogle Scholar
  70. Ponte RM, Quinn KJ, Piecuch CG (2018) Accounting for gravitational attraction and loading effects from land ice on absolute sea level. J Atmos Ocean Technol 35:405–410CrossRefGoogle Scholar
  71. Proshutinsky AY, Johnson MA (1997) Two circulation regimes of the wind-driven Arctic Ocean. J Geophys Res 102(C6):12493–12514CrossRefGoogle Scholar
  72. Proshutinsky A, Pavlov V, Bourke RH (2001) Sea level rise in the Arctic Ocean. Geophys Res Lett 28(11):2237–2240CrossRefGoogle Scholar
  73. Proshutinsky A, Ashik IM, Dvorkin EN, Häkkinen S, Krishfield RA, Peltier WR (2004) Secular sea level change in the Russian sector of the Arctic Ocean. J Geophys Res 109:C03042.  https://doi.org/10.1029/2003JC002007 CrossRefGoogle Scholar
  74. Proshutinksy A, Ashik I, Häkkinen S, Hunke E, Krishfield R, Maltrud M, Maslowski W, Zhang J (2007) Sea level variability in the Arctic Ocean from AOMIP models. J Geophys Res 112:C04S08.  https://doi.org/10.1029/2006JC003916 Google Scholar
  75. Permanent Service for Mean Sea Level (PSMSL) (2018) Tide gauge data. http://www.psmsl.org/data/obtaining/. Retrieved 5 Mar 2018
  76. Qiu B, Chen S (2006) Decadal variability in the large-scale sea surface height field of the South Pacific Ocean: observations and causes. J Phys Oceanogr 36:1751–1762CrossRefGoogle Scholar
  77. Qiu B, Chen S (2010) Interannual-to-decadal variability in the bifurcation of the North Equatorial Current off the Philippines. J Phys Oceanogr 40:2525–2538CrossRefGoogle Scholar
  78. Qiu B, Chen S (2012) Multidecadal sea level and gyre circulation variability in the northwestern tropical Pacific Ocean. J Phys Oceanogr 42:193–206CrossRefGoogle Scholar
  79. Richter K, Nilson JEØ, Drange H (2012) Contributions to sea level variability along the Norwegian coast for 1960–2010. J Geophys Res 117:C05038.  https://doi.org/10.1029/2011JC007826 Google Scholar
  80. Royston S, Watson CS, Legrésy B, King MA, Church JA, Bos MS (2018) Sea-level trend uncertainty with Pacific climatic variability and temporally-correlated noise. J Geophys Res Oceans 123:1978–1993.  https://doi.org/10.1002/2017JC013655 CrossRefGoogle Scholar
  81. Sandstrom H (1980) On the wind-induced sea level changes on the Scotian shelf. J Geophys Res 85(C1):461–468CrossRefGoogle Scholar
  82. Sasaki YN, Minobe S, Miura Y (2014) Decadal sea-level variability along the coast of Japan in response to ocean circulation changes. J Geophys Res 119:266–275.  https://doi.org/10.1002/2013JC009327 CrossRefGoogle Scholar
  83. Sasaki YN, Washizu R, Yasuda T, Minobe S (2017) Sea level variability around Japan during the twentieth century simulated by a regional ocean model. J Clim 30:5585–5595CrossRefGoogle Scholar
  84. Stammer D, Hüttemann S (2008) Response of regional sea level to atmospheric pressure loading in a climate change scenario. J Clim 21:2093–2101CrossRefGoogle Scholar
  85. Stammer D, Cazenave A, Ponte RM, Tamisiea ME (2013) Causes for contemporary regional sea level changes. Annu Rev Mar Sci 5:21–46CrossRefGoogle Scholar
  86. Stammer D, Ray RD, Andersen OB, Arbic BK, Bosch W, Carrère L, Cheng Y, Chinn DS, Dushaw BD, Egbert GD, Erofeeva SY, Fok HS, Green JAM, Griffiths S, King MA, Lapin V, Lemoine FG, Luthcke SB, Lyard F, Morison J, Müller M, Padman L, Richman JG, Shriver JF, Shum CK, Taguchi E, Yi Y (2014) Accuracy assessment of global barotropic ocean tide models. Rev Geophys 52:243–282.  https://doi.org/10.1002/2014RG000450 CrossRefGoogle Scholar
  87. Sturges W, Douglas BC (2011) Wind effects on estimates of sea level rise. J Geophys Res 116:C06008.  https://doi.org/10.1029/2010JC006492 CrossRefGoogle Scholar
  88. Sündermann J, Pohlmann T (2011) A brief analysis of North Sea physics. Oceanologia 53(3):663–689CrossRefGoogle Scholar
  89. Theuerkeuf EJ, Rodriguez AB, Fegley SR, Luettich RA (2014) Sea level anomalies exacerbate beach erosion. Geophys Res Lett 41:5139–5147.  https://doi.org/10.1002/2014GL060544 CrossRefGoogle Scholar
  90. Thompson PR, Mitchum GT (2014) Coherent sea level variability on the North Atlantic western boundary. J Geophys Res 119:5676–5689.  https://doi.org/10.1002/2014JC009999 CrossRefGoogle Scholar
  91. Thompson PR, Mitchum GT, Vonesch C, Li J (2013) Variability of winter storminess in the eastern United States during the twentieth century from tide gauges. J Clim 26:9713–9726CrossRefGoogle Scholar
  92. Thompson PR, Merrifield MA, Wells JR, Chang CM (2014) Wind-driven coastal sea level variability in the northeast Pacific. J Clim 27:4733–4751CrossRefGoogle Scholar
  93. Thompson PR, Hamlington BD, Landerer FW, Adhikari S (2016) Are long tide gauge records in the wrong place to measure global mean sea level rise? Geophys Res Lett 43:10403–10411.  https://doi.org/10.1002/2016GL070552 CrossRefGoogle Scholar
  94. Thorne K, MacDonald G, Guntenspergen G, Ambrose R, Buffington K, Dugger B, Freeman C, Janousek C, Brown L, Rosencranz J, Holmquist J, Smol J, Hargan K, Takekawa J (2018) U.S. Pacific coastal wetland resilience and vulnerability to sea-level rise. Sci Adv 4:eaao3270CrossRefGoogle Scholar
  95. Tsimplis MN, Álvarez-Fanjul E, Gomis D, Fenoglio-Marc L, Pérez B (2005) Mediterranean Sea level trends: atmospheric pressure and wind contribution. Geophys Res Lett 32:L20602.  https://doi.org/10.1029/2005GL023867 CrossRefGoogle Scholar
  96. Vinogradova NT, Ponte RM, Stammer D (2007) Relation between sea level and bottom pressure and the vertical dependence of oceanic variability. Geophys Res Lett 34:L03608CrossRefGoogle Scholar
  97. Willebrand J, Philander SGH, Pacanowski RC (1980) The oceanic response to large-scale atmospheric disturbances. J Phys Oceanogr 10:411–429CrossRefGoogle Scholar
  98. Woodworth PL, Pouvreau N, Wöppelmann G (2010) The gyre-scale circulation of the North Atlantic and sea level at Brest. Ocean Sci 6:185–190CrossRefGoogle Scholar
  99. Woodworth PL, Morales Maqueda MÁ, Roussenov VM, Williams RG, Hughes CW (2014) Mean sea-level variability along the northeast American Atlantic coast and the roles of the wind and the overturning circulation. J Geophys Res Oceans 119:8916–8935.  https://doi.org/10.1002/2014JC010520 CrossRefGoogle Scholar
  100. Woodworth PL, Morales Maqueda MÁ, Gehrels WR, Roussenov VM, Williams RG, Hughes CW (2017) Variations in the difference between mean sea level measured either side of Cape Hatteras and their relation to the North Atlantic Oscillation. Clim Dyn 49(7–8):2451–2469CrossRefGoogle Scholar
  101. Woodworth PL, Melet A, Marcos M, Ray RD, Wöppelmann G, Sasaki YN, Cirano M, Hibbert A, Huthnance JM, Montserrat S, Merrifield MA (2019) Forcing factors affecting sea level changes at the coast. Surv Geophys.  https://doi.org/10.1007/s10712-019-09531-1 Google Scholar
  102. Wunsch CW, Stammer D (1997) Atmospheric loading and the oceanic ”inverted barometer” effect. Rev Geophys 35(1):79–107CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Woods Hole Oceanographic InstitutionWoods HoleUSA
  2. 2.National Oceanography CentreLiverpoolUK
  3. 3.Forschungsinstitut Wasser und UmweltUniversität SiegenSiegenGermany
  4. 4.Instituto Español de Oceanografía (IEO), Centre Oceanogràfic de BalearsPalma de MallorcaSpain

Personalised recommendations