Advertisement

Impact of Continental Freshwater Runoff on Coastal Sea Level

  • Fabien DurandEmail author
  • Christopher G. Piecuch
  • Mélanie Becker
  • Fabrice Papa
  • Sherin V. Raju
  • Jamal U. Khan
  • Rui M. Ponte
Article

Abstract

Freshwater discharge to the coastal ocean is a fundamental component of the global water cycle. It can impact coastal sea level over a broad range of spatial and temporal scales. Here we review the status of the current knowledge based on observational and modeling approaches. The main limitation in studies of the influence of rivers on coastal sea level has been the lack of consolidated discharge databases. We first provide an inventory of the main data sources currently available. We then review the existing knowledge about the runoff forcing of coastal sea level, differentiating between the mass and steric height contributions. Both mechanisms are important for coastal sea level budget, although they act on different scales. The mass contribution is related to a global ocean response that is established on relatively short timescales through barotropic processes while the steric contribution is associated with more of a regional adjustment that takes place on longer timescales by means of baroclinic dynamics. While numerical models required to simulate the runoff impact on coastal sea level variability have been improving over the past decades, a similar evolution is awaited for observational techniques, both for in situ observation and for remote sensing.

Keywords

Sea level Runoff Discharge River plumes Salinity 

Notes

Acknowledgements

We are thankful to Valérie Ballu and Stéphane Calmant for sharing the GNSS blanket dataset. Rachid Benshila carried out the Bay of Bengal passive tracer modeling experiment. We thank GRDC for providing discharge data on request. FD and JK were hosted by LIENSs—Université de La Rochelle, France during this work. CGP was supported by the Independent Research & Development Program at Woods Hole Oceanographic Institution. JK was supported by Centre National d’Etudes Spatiales (CNES), FRANCE, and by the Embassy of France in Bangladesh. FP and FD were supported by the CNES-TOSCA program via the BANDINO and AltiKest projects. MB was supported by the French research agency (Agence Nationale de la Recherche; ANR) under the DELTA project (ANR-17-CE03-0001). RMP was supported by NASA contract NNH16CT01C to AER. The in situ data presented in Fig. 6 were collected in the northern Bay of Bengal with support from the Ministry of Earth Sciences (MoES), Government of India. The authors thank all the project staff for their efforts in collecting these data.

References

  1. Akhil VP, Durand F, Lengaigne M, VialardJ Keerthi MG, Gopalakrishna VV, Deltel C, Papa F, de Boyer Montegut C (2014) A modeling study of the processes of surface salinity seasonal cycle in the Bay of Bengal. J Geophys Res Oceans 119:3926–3947.  https://doi.org/10.1002/2013jc009632 CrossRefGoogle Scholar
  2. Akhil VP, Lengaigne M, Durand F, Vialard J, Chaitanya AVS, Keerthi MG, Gopalakrishna VV, Boutin J, de Boyer Montégut C (2016) Assessment of seasonal and year-to-year surface salinity signals retrieved from SMOS and Aquarius missions in the Bay of Bengal. Int J Remote Sens 37(5):1089–1114.  https://doi.org/10.1080/01431161.2016.1145362 CrossRefGoogle Scholar
  3. Alsdorf DE, Rodriguez E, Lettenmaier DP (2007) Measuring surface water from space. Rev Geophys 45:1–24.  https://doi.org/10.1029/2006rg000197 CrossRefGoogle Scholar
  4. Aubrey DG, Emery KO, Uchipi E (1988) Changing coastal sea levels of South America and the Caribbean region from tide gauge records. Tectonophysics 154:269–284CrossRefGoogle Scholar
  5. Ballu V, Bouin MN, Siméoni P, Crawford WC, Calmant S, Boré JM et al (2011) Comparing the role of absolute sea-level rise and vertical tectonic motions in coastal flooding, Torres Islands (Vanuatu). Proc Natl Acad Sci USA 108(32):13019–13022CrossRefGoogle Scholar
  6. Becker M, Karpytchev M, Lennartz-Sassink S (2014) Long-term sea level trends: natural or anthropogenic? Geophys Res Lett 41:5571–5580CrossRefGoogle Scholar
  7. Becker M, Karpytchev M, Papa F (2019) Hotspots of relative sea level rise in the tropics, chapter 7. In: Vuruputur V, Sukhatme J, Murtugudde R, Roca R (eds) Tropical extremes: natural variability and trends: observations, modeling, and theoretical expectations. Elsevier, AmsterdamGoogle Scholar
  8. Benshila R, Durand F, Masson S, Bourdallé-Badie R, de Boyer Montégut C, Papa F, Madec G (2014) The upper Bay of Bengal salinity structure in a high-resolution model. Ocean Model 74:36–52CrossRefGoogle Scholar
  9. Biancamaria S, Lettenmaier DP, Pavelsky TM (2016) The SWOT mission and its capabilities for land hydrology. Surv Geophys 37(2):307–337CrossRefGoogle Scholar
  10. Biancamaria S, Frappart F, Normandin C, Blarel F, Bourrel L, Aumont M, Azémar P, Vu P-L, Lubac B, Darrozes J (2017) Tonle Sap lake water storage change over 24 years from satellite observation and its link with Mekong River discharge and climate events. AGU fall meeting, 11–15 December 2017, New Orleans, LA, USAGoogle Scholar
  11. Birol F, Fuller N, Lyard F, Cancet M, Niño F, Belebecque Fleury S, Toublanc F, Melet A, Saraceno M, Leger F (2017) Coastal applications from nadir altimetry: example of the X-TRACK regional products. Adv Space Res 59:936–953CrossRefGoogle Scholar
  12. Blaha JP (1984) Fluctuations of monthly sea level as related to the intensity of the gulf stream from key west to Norfolk. J Geophys Res 89(C5):8033–8042CrossRefGoogle Scholar
  13. Boutin J, Vergely JL, Marchand S, D’Amico F, Hasson A, Kolodziejczyk N, Reul N, Reverdin G, Vialard J (2018) New SMOS sea surface salinity with reduced systematic errors and improved variability. Remote Sens Environ 214:115–134.  https://doi.org/10.1016/j.rse.2018.05.022 CrossRefGoogle Scholar
  14. Calafat FM, Wahl T, Lindsten F, Williams J, Frajka-Williams E (2018) Coherent modulation of the sea-level annual cycle in the United States by Atlantic Rossby wave. Nat Commun 9:2571CrossRefGoogle Scholar
  15. Chaitanya AVS, Lengaigne M, Vialard J, Gopalakrishna VV, Durand F, Kranthikumar C, Amritash S, Suneel V, Papa F, Ravichandran M (2014) Fishermen-operated salinity measurements reveal a “river in the sea” flowing along the east coast of India. BAMS 95:1897–1908.  https://doi.org/10.1175/BAMS-D-12-00243.1 CrossRefGoogle Scholar
  16. Chaitanya AVS, Durand F, Mathew S, Gopalakrishna VV, Papa F, Lengaigne M, Vialard J, Kranthikumar C, Venkatesan R (2015) Observed year-to-year sea surface salinity variability in the Bay of Bengal during the period 2009–2014. Ocean Dyn 65:173–186.  https://doi.org/10.1007/s10236-014-0802-x CrossRefGoogle Scholar
  17. Chandanpurkar HA, Reager JT, Famiglietti JS, Syed TH (2017) Satellite- and reanalysis-based mass balance estimates of global continental discharge (1993–2015). J Clim 30:8481–8495.  https://doi.org/10.1175/JCLI-D-16-0708.1 CrossRefGoogle Scholar
  18. Chelton DB, Davis RE (1982) Monthly mean sea-level variability along the west coast of North America. J Phys Oceanogr 12:757–784CrossRefGoogle Scholar
  19. Chelton DB, Enfield DB (1986) Ocean signals in tide gauge records. J Geophys Res 91(B9):9081–9098CrossRefGoogle Scholar
  20. Cipollini P, et al (2010) The role of altimetry in coastal observing systems. In: Hall J, Harrison DE, Stammer D(eds) Proceedings of OceanObS09: sustained ocean observations and information for society (vol 2), Venice, Italy, 21–25 September 2009. ESA Publication WPP-306Google Scholar
  21. Clark EA, Sheffield J, Van Vliet MTH, Nijssen B, Lettenmaier DP (2015) Continental runoff into the Oceans (1950–2008). J Hydrometeorol 16:1502–1520.  https://doi.org/10.1175/jhm-d-14-0183.1 CrossRefGoogle Scholar
  22. Coles VJ, Brooks MT, Hopkins J, Stukel MR, Yager PL, Hood RR (2013) The pathways and properties of the Amazon River Plume in the tropical North Atlantic Ocean. J Geophys Res Oceans 118:6894–6913.  https://doi.org/10.1002/2013jc008981 CrossRefGoogle Scholar
  23. da Silva CE, Castelao RM (2018) Mississippi River plume variability in the Gulf of Mexico from SMAP and MODIS-Aqua observations. J Geophys Res Oceans 123:6620–6638.  https://doi.org/10.1029/2018JC014159 CrossRefGoogle Scholar
  24. Dai A (2016) Historical and future changes in streamflow and continental runoff: a review. In: Tang Q, Oki T (eds) Terrestrial water cycle and climate change: natural and human-induced impacts. Geophysical monograph 221. AGU, Wiley, Hoboken, pp 17–37.  https://doi.org/10.1002/9781118971772 CrossRefGoogle Scholar
  25. Dai A, Trenberth KE (2002) Estimates of freshwater discharge from continents: latitudinal and seasonal variations. J Hydrometeorol 3(6):660–687CrossRefGoogle Scholar
  26. Dai A, Qian T, Trenberth KE (2009) Changes in continental freshwater discharge from 1948 to 2004. J Clim 22(10):2773–2792.  https://doi.org/10.1175/2008jcli2592.1 CrossRefGoogle Scholar
  27. Do HX, Gudmundsson L, Leonard M, Westra S (2018) The global streamflow indices and metadata archive (GSIM)—Part 1 : The production of a daily streamflow archive and metadata. Earth Syst Sci Data 10:765–785.  https://doi.org/10.5194/essd-10-765-2018 CrossRefGoogle Scholar
  28. Dobslaw H, Thomas M (2007) Impact of river run-off on global ocean mass redistribution. Geophys J Int 168:527–532CrossRefGoogle Scholar
  29. Dufau C, Orsztynowicz M, Dibarboure G, Morrow R, Le Traon P-Y (2016) Mesoscale resolution capability of altimetry: present and future. J Geophys Res Oceans 121:4910–4927CrossRefGoogle Scholar
  30. Durand F, Papa F, Rahman A, Bala SK (2011) Impact of Ganges–Brahmaputra interannual discharge variations on Bay of Bengal salinity and temperature during the 1992–99 period. J Earth Syst Sc. 120(5):859–872CrossRefGoogle Scholar
  31. Durand F, Calmant S, Calzas M, Ballu V, Testut L, Valty P, Krien Y, Bonnefond P, Papa F (2017) Geodetic survey of the freshwater front of the Ganges–Brahmaputra freshwater plume in the northern Bay of Bengal from CalNaGeo GNSS device. OSTST2017, Miami, USA, Oct 2017Google Scholar
  32. Ekman M (1996) A consistent map of the postglacial uplift of Fennoscandia. Terra Nova 8:158–165.  https://doi.org/10.1111/j.1365-3121.1996.tb00739.x CrossRefGoogle Scholar
  33. Emery KO, Aubrey DG (1991) Sea levels, land levels, and tide gauges. Springer, New York, p 237CrossRefGoogle Scholar
  34. Fekete B, Vörösmarty CJ, Grabs W (2000) Report no. 22: global composite runoff fields based on observed discharge and simulated water balances. Global Runoff Data Centre/Federal Institute of Hydrology (BfG) Rep., 108 ppGoogle Scholar
  35. Fekete B, Robarts RD, Kumagai M, Nachtnebel HP, Odada E, Zhulidov AV (2015) Time for in situ renaissance. Science 349(6249):685–686.  https://doi.org/10.1126/science.aac7358 CrossRefGoogle Scholar
  36. Fong D, Geyer WR (2002) The alongshore transport of freshwater in a surface trapped river plume. J Phys Oceanogr 32:957–972CrossRefGoogle Scholar
  37. Fong D, Geyer WR, Signell R (1997) The wind-forced response on a buoyant coastal current: observations of the western Gulf of Maine. J Mar Syst 12:69–81CrossRefGoogle Scholar
  38. Fournier S, Vandemark D, Gaultier L, Lee T, Jonsson B, Gierach MM (2017a) Interannual variation in offshore advection of Amazon–Orinoco plume waters: observations, forcing mechanisms, and impacts. J Geophys Res : Oceans 122:8966–8982.  https://doi.org/10.1002/2017JC013103 CrossRefGoogle Scholar
  39. Fournier S, Vialard J, Lengaigne M, Lee T, Gierach MM, Chaitanya AVS (2017b) Modulation of the Ganges–Brahmaputra river plume by the Indian Ocean dipole and eddies inferred from satellite observations. J Geophys Res: Oceans 122:9591–9604.  https://doi.org/10.1002/2017JC013333 CrossRefGoogle Scholar
  40. Frappart F, Papa F, Marieu V, Malbeteau Y, Jordy F, Calmant S, Durand F, Bala S (2015) Preliminary assessment of SARAL/ALTIKA observations over the Ganges–Brahmaputra and Irrawaddy rivers. Mar Geodesy 38:568–580.  https://doi.org/10.1080/01490419.2014.990591 CrossRefGoogle Scholar
  41. Garvine RW (1999) Penetration of buoyant coastal discharge onto the continental shelf: a numerical model experiment. J Phys Oceanogr 29:1892–1909CrossRefGoogle Scholar
  42. Garvine RW (2001) The impact of model configuration in studies of buoyant coastal discharge. J Mar Res 59:193–225CrossRefGoogle Scholar
  43. Geyer WR (1995) Tide-induced mixing in the Amazon frontal zone. J Geophys Res 100(C2):2341–2353.  https://doi.org/10.1029/94jc02543 CrossRefGoogle Scholar
  44. Geyer WR, Kineke GC (1995) Observations of currents and water properties in the Amazon frontal zone. J Geophys Res 100(C2):2321–2339.  https://doi.org/10.1029/94jc02657 CrossRefGoogle Scholar
  45. Gill AE, Niller PP (1973) The theory of the seasonal variability in the ocean. Deep Sea Res 20(2):141–177.  https://doi.org/10.1016/0011-7471(73)90049-1 CrossRefGoogle Scholar
  46. Gómeze-Enri J, Cipollini P, Passaro M, Vignudelli S, Tejedor B, Coca J (2016) Coastal altimetry products in the strait of Gibralar. IEEE T Geosci Remote 54(9):5455–5466CrossRefGoogle Scholar
  47. Gough WA, Robinson CA (2000) Sea-level variation in Hudson Bay, Canada, from Tide–Gauge data. Arct Antarct Alp Res 32(3):331–335CrossRefGoogle Scholar
  48. GRDC (2014) Global freshwater fluxes into the world oceans/online provided by global runoff data centre, 2014 edn. Federal Institute of Hydrology (BfG), KoblenzGoogle Scholar
  49. GRDC (2018) Long-Term statistics and annual characteristics of GRDC timeseries data/online provided by the global runoff data centre of WMO. Federal Institute of Hydrology (BfG), Koblenz. Accessed 29 Nov 2018Google Scholar
  50. Gudmundsson L, Do HX, Leonard M, Westra S (2018) The global streamflow indices and metadata archive (GSIM)—Part 2: quality control, time-series indices and homogeneity assessment. Earth Syst Sci Data 10:787–804.  https://doi.org/10.5194/essd-10-787-2018 CrossRefGoogle Scholar
  51. Guo X, Valle-Levinson A (2007) Tidal effects on estuarine circulation and outflow plume in the Chesapeake Bay. Cont Shelf Res 27(1):20–42.  https://doi.org/10.1016/j.csr.2006.08.009 CrossRefGoogle Scholar
  52. Han G (2002) Interannual sea-level variations in the Scotia-Maine region in the 1990s. Can J Remote Sens 28(4):581–587CrossRefGoogle Scholar
  53. Han W, Webster PJ (2002) Forcing mechanisms of sea level interannual variability in the Bay of Bengal. J Phys Oceanogr 32:216–239CrossRefGoogle Scholar
  54. Hong BG, Sturges W, Clarke AJ (2000) Sea level on the U.S. east coast: decadal variability caused by open ocean wind-curl forcing. J Phys Oceanogr 29:2088–2098.  https://doi.org/10.1175/1520-0485(2000)030 CrossRefGoogle Scholar
  55. Hordoir R, Nguyen KD, Polcher J (2006) Simulating tropical river plumes, a set of parametrizations based on macroscale data: a test case in the Mekong Delta region. J Geophys Res 111:C09036.  https://doi.org/10.1029/2005jc003392 CrossRefGoogle Scholar
  56. Horner-Devine AR, Hetland RD, MacDonal DG (2015) Mixing and transport in coastal river plumes. Annu Rev Fluid Mech 47:569–594CrossRefGoogle Scholar
  57. HYBAM (2018) Contrôles géodynamique, hydrologique et biogéochimique de l’érosion/altération et des transferts de matière dans les bassins de l’Amazone, de l’Orénoque et du Congo. http://www.ore-hybam.org. Accessed 29 Nov 2018
  58. Jian J, Webster PJ, Hoyos CD (2009) Large-scale controls on Ganges and Brahmaputra river discharge on intraseasonal and seasonal time scales. Q J R Meteorol Soc 135:353–370. https://doi.org/10.1002/qj.384CrossRefGoogle Scholar
  59. Kärnä T, Baptista AM, Lopez JE, Turner PJ, McNeil C, Sanford TB (2015) Numerical modeling of circulation in high-energy estuaries: a Columbia River estuary benchmark. Ocean Model 88:54–71.  https://doi.org/10.1016/j.ocemod.2015.01.001 CrossRefGoogle Scholar
  60. Karpytchev M, Ballu V, Krien Y, Becker M, Goodbred S, Spada G, Calmant S, Shum CK, Khan Z (2018) Contributions of a strengthened early holocene monsoon and sediment loading to present-day subsidence of the Ganges-Brahmaputra delta. Geophys Res Lett 45(3):1433–1442.  https://doi.org/10.1002/2017GL076388 CrossRefGoogle Scholar
  61. Krien Y, Mayet C, Testut L, Durand F, Tazkia AR, Islam AKMS, Gopalakrishna VV, Becker M, Calmant S, Papa F, Ballu V, Shum CK, Khan ZH (2016) Improved bathymetric dataset and tidal model for the head Bay of Bengal. Marine Geodesy 39:422–438.  https://doi.org/10.1080/01490419.2016.1227405 CrossRefGoogle Scholar
  62. Laiz I, Gómez-Enri J, Tejedor B, Aboitiz A, Villares P (2013) Seasonal sea level variations in the gulf of Cadiz continental shelf from in situ measurements and satellite altimetry. Cont Shelf Res 53:77–88.  https://doi.org/10.1016/j.csr.2012.12.008 CrossRefGoogle Scholar
  63. Laiz I, Ferrer L, Plomaritis TA, Charria G (2014) Effect of river runoff on sea level from in situ measurements and numerical models in the Bay of Biscay. Deep-Sea Res II 106:49–67.  https://doi.org/10.1016/j.dsr2.2013.12.013i CrossRefGoogle Scholar
  64. Lammers RB, Shiklomanov AI, Vörosmarty CJ, Fekete BM, Peterson BJ (2001) Assessment of contemporary Arctic river runoff based on observational discharge records. J Geophys Res 106:3321–3334.  https://doi.org/10.1029/2000jd900444 CrossRefGoogle Scholar
  65. Lentz SJ, Limeburner R (1995) The Amazon River Plume during AMASSEDS: spatial characteristics and salinity variability. J of Geophys Res 100(C2):2355.  https://doi.org/10.1029/94jc01411 CrossRefGoogle Scholar
  66. Li M, Zhong L, Boicourt WC (2005) Simulations of Chesapeake Bay estuary: sensitivity to turbulence mixing parameterizations and comparison with observations. J Geophys Res 110(C12004)Google Scholar
  67. Lorbacher KS, Marsland J, Church JA, Griffies SM, Stammer D (2012) Rapid barotropic sea level ris from ice sheet melting. J Geophys Res.  https://doi.org/10.1029/2011jc007733 CrossRefGoogle Scholar
  68. Marcos M, Wöppelmann G, Matthews A et al (2019) Coastal sea level and related fields from existing observing systems. Surv Geophys 10:15–20.  https://doi.org/10.1007/s10712-019-09513-3 CrossRefGoogle Scholar
  69. McCreary JP, Zhang S, Shetye SR (1997) Coastal circulation driven by river outflow in a variable-density 11/2-layer model. J Geophys Res 102:15535–15554CrossRefGoogle Scholar
  70. Meade RH, Emery KO (1971) Sea level as affected by river runoff, eastern United States. Science 173:425–428CrossRefGoogle Scholar
  71. Muller-Karger FE, McClain CR, Richardson PL (1988) The dispersal of the Amazon’s water. Nature 333(6168):56–59.  https://doi.org/10.1038/333056a0 CrossRefGoogle Scholar
  72. Neetu S, Lengaigne M, Vincent EM, Vialard J, Madec G, Samson G, Ramesh Kumar MR, Durand F (2012) Influence of upper-ocean stratification on tropical cyclones-induced surface cooling in the Bay of Bengal. J Geophys Res 117:C12020CrossRefGoogle Scholar
  73. Neumann B, Vafeidis AT, Zimmermann J, Nicholls RJ (2015) Future coastal population growth and exposure to sea-level rise and coastal flooding—a global assessment. PLoS ONE 10(3):e0118571.  https://doi.org/10.1371/journal.pone.0118571 CrossRefGoogle Scholar
  74. Nittrouer CA, DeMaster DJ, Figueiredo AG, Rine JM (1991) AmasSeds: an interdisciplinary investigation of a complex coastal environment. Oceanography 4(1):3–7.  https://doi.org/10.5670/oceanog.1991.14 CrossRefGoogle Scholar
  75. Nof D (2005) The momentum imbalance paradox revisited. J Phys Oceanogr 35:1928–1939CrossRefGoogle Scholar
  76. Nof D, Pichevin T (2001) The ballooning of outflows. J Phys Oceanogr 31:3045–3058CrossRefGoogle Scholar
  77. Palma ED, Matano RP (2012) A numerical study of the Magellan Plume. J Geophys Res 117:C05041.  https://doi.org/10.1029/2011jc007750 CrossRefGoogle Scholar
  78. Papa F, Bala SK, Kumar Pandey R, Durand F, Gopalakrishna VV, Rahman A, Rossow WB (2012a) Ganga-Brahmaputra river discharge from Jason-2 radar altimetry: an update to the long-term satellite-derived estimates of continental freshwater forcing flux into the Bay of Bengal. J Geophys Res 117:C11021.  https://doi.org/10.1029/2012jc008158 CrossRefGoogle Scholar
  79. Papa F, Biancamaria S, Lion C, Rossow WB (2012b) Uncertainties in mean river discharge estimates associated with satellite altimeters temporal sampling intervals: a case study for the annual peak flow in the context of the future SWOT hydrology mission. IEEE Geosci Remote Sens Lett 9(4):569–573.  https://doi.org/10.1109/lgrs.2011.2174958 CrossRefGoogle Scholar
  80. Passaro M, Cipollini P, Benveniste J (2015) Annual sea level variability of the coastal ocean: the Baltic Sea-North Sea transition zone. J Geophys Res Oceans 120:3061–3078CrossRefGoogle Scholar
  81. Peralta-Ferriz C, Morison J (2010) Understanding the annual cycle of the Arctic Ocean bottom pressure. Geophys Res Lett 37:L10603.  https://doi.org/10.1029/2010gl042827 CrossRefGoogle Scholar
  82. Phien-wej N, Giao PH, Nutalaya P (2006) Land subsidence in Bangkok. Thailand. Eng Geol 82(4):187–201.  https://doi.org/10.1016/j.enggeo.2005 CrossRefGoogle Scholar
  83. Pichevin T, Nof D (1997) The momentum imbalance paradox. Tellus 49:298–319CrossRefGoogle Scholar
  84. Piecuch CG, Bittermann K, Kemp AC, Ponte RM, Little CM, Engelhart SE, Lentz SJ (2018) River-discharge effects on United States Atlantic and Gulf coast sea-level changes. Proc Natl Acad Sci 115(30):7729–7734.  https://doi.org/10.1073/pnas.1805428115 CrossRefGoogle Scholar
  85. Piecuch CG, Calafat FM, Dangendorf S, Jordà G (2019) The ability of barotropic models to simulate historical mean sea level changes from coastal tide gauge data.  https://doi.org/10.1007/s10712-019-09537-9
  86. Ponte RM (1993) Variability in a homogeneous global ocean forced by barometric pressure. Dyn Atmos Oceans 18:209–234CrossRefGoogle Scholar
  87. Ponte RM (2006) Oceanic response to surface loading effects neglected in volume-conserving models. J Phys Oceanogr 36:426–434CrossRefGoogle Scholar
  88. Prigent C, Lettenmaier DP, Aires F, Papa F (2016) Towards a high resolution monitoring of continental surface water extent and dynamics, at global scale: from GIEMS (global inundation extent from multi-satellites) to SWOT (surface water ocean topography). Surv Geophys 37(2):339–355.  https://doi.org/10.1007/s10712-015-9339-x CrossRefGoogle Scholar
  89. Proshutinsky A, Ashik IM, Dvorkin EN, Hakkinen S, Krishfield RA, Peltier WR (2004) Secular sea level change in the Russian sector of the Arctic Ocean. J Geophys Res 109:C03042CrossRefGoogle Scholar
  90. Reul N, Quilfen Y, Chapron B, Fournier S, Kudryavtsev V, Sabia R (2014) Multisensor observations of the Amazon-Orinoco river plume interactions with hurricanes. J Geophys Res Oceans 119:8271–8295.  https://doi.org/10.1002/2014jc010107 CrossRefGoogle Scholar
  91. Roden GI (1960) On the nonseasonal variations in sea level along the west coast of North America. J Geophys Res 65(9):2809–2826CrossRefGoogle Scholar
  92. Rodolfo KS, Siringan FP (2006) Global sea-level rise is recognised, but flooding from anthropogenic land subsidence is ignored around northern Manila Bay, Philippines. Disasters 30(1):118–139CrossRefGoogle Scholar
  93. Royer TC (1979) On the effect of precipitation and runoff on coastal circulation in the Gulf of Alaska. J Phys Oceanogr 9:555–563CrossRefGoogle Scholar
  94. Ruiz Etcheverry LA, Saraceno M, Piola AR, Valladeau G, Moeller OO (2015) A comparison of the annual cycle of sea level in coastal areas from gridded satellite altimetry and tide gauges. Cont Shelf Res 92:87–97CrossRefGoogle Scholar
  95. Santamaria-Gomez A, Gravelle M, Dangendorf S, Marcos M, Spada G, Woppelmann G (2017) Uncertainty of the 20th century sea-level rise due to vertical land motion errors. Earth Planet Sci Lett 473:24–32CrossRefGoogle Scholar
  96. Saramul S, Ezer T (2014) Spatial variations of sea level along the coast of Thailand: impacts of extreme land subsidence, earthquakes and the seasonal monsoon. Global Planet Change 122:70–81CrossRefGoogle Scholar
  97. Sengupta D, Bharath Raj GN, Ravichandran M, Sree Lekha J, Papa F (2016) Near-surface salinity and stratification in the north Bay of Bengal from moored observations. Geophys Res Lett 43:4448–4456.  https://doi.org/10.1002/2016GL068339 CrossRefGoogle Scholar
  98. Shankar D, Vinayachandran P, Unnikrishnan AS (2002) The monsoon currents in the north Indian Ocean. Prog Oceanogr 52:63–120CrossRefGoogle Scholar
  99. Shankar D, Gandhi Aparna Saieesh, McCreary JP, Suresh I, Neetu S, Durand F, Shenoi SSC, Al Saafani MA (2010) Minima of interannual sea-level variability in the Indian Ocean. Progress in Oceanography 83:225–241.  https://doi.org/10.1016/j.pocean.2009.10.002 CrossRefGoogle Scholar
  100. Sherin VR, Durand F, Gopalakrishna VV, Anuvinda S, Chaitanya AVS, Bourdalle-Badie R, Papa F (2018) Signature of Indian Ocean dipole on the western boundary current of the Bay of Bengal revealed from 27 years of repeated in situ observations. DSR-I 136:91–106.  https://doi.org/10.1016/j.dsr.2018.04.002 CrossRefGoogle Scholar
  101. Shiklomanov AI, Lammers RB, Vorosmarty CJ (2002) Widespread decline in hydrological monitoring threatens Pan-Arctic Research. EOS Trans Am Geophys Union 83:13.  https://doi.org/10.1029/2002eo000007 CrossRefGoogle Scholar
  102. Simpson JH (1997) Physical processes in the ROFI regime. J Mar Syst 12(1–4):3–15.  https://doi.org/10.1016/s0924-7963(96)00085-1 CrossRefGoogle Scholar
  103. Sree Lekha J, Buckley JM, Tandon A, Sengupta D (2018) Subseasonal dispersal of freshwater in the northern Bay of Bengal in the 2013 summer monsoon season. J. Geophys Res Oceans 123:6330–6348.  https://doi.org/10.1029/2018jc014181 CrossRefGoogle Scholar
  104. Stammer D (2010) Reply to comment by J. F. R. Gower on “Response of the global ocean to Greenland and Antarctic ice melting. J Geophys Res 115:C10010.  https://doi.org/10.1029/2010jc006457 CrossRefGoogle Scholar
  105. Stanev EV, Grashorn S, Zhang Y (2017) Cascading ocean basins: numerical simulations of the circulation and interbasin exchange in the Azov-Black-Marmara-Mediterranean Seas system. Ocean Dyn 67:1003–1025.  https://doi.org/10.1007/s10236-017-1071-2 CrossRefGoogle Scholar
  106. Stanev EV, Pein J, Grashorn S, Zhang Y, Schrum C (2018) Dynamics of the Baltic Sea straits via numerical simulation of exchange flows. Ocean Model 131:40–58CrossRefGoogle Scholar
  107. Suzuki T, Yamazaki D, Tsujino H, Komuro Y, Nakano H, Urakawa S (2018) A dataset of continental river discharge based on JRA–55 for use in a global ocean circulation model. J Oceanogr 74:421–429.  https://doi.org/10.1007/s10872-017-0458-5 CrossRefGoogle Scholar
  108. Svendsen PL, Andersen OB, Nielsen AA (2016) Stable reconstruction of Arctic sea level for the 1950-2010 period. J Geophys Res Oceans 121:5697–5710CrossRefGoogle Scholar
  109. Syed TH, Famiglietti JS, Chambers DP, Willis JK, Hilburn K (2010) Satellite-based global-ocean mass balance estimates of interannual variability and emerging trends in continental freshwater discharge. PNAS 107(42):7916–17921.  https://doi.org/10.1073/pnas.1003292107 CrossRefGoogle Scholar
  110. Tao B, Tian H, Ren W, Yang J, Yang Q, He R, Cai W, Lohrenz S (2014) Increasing Mississippi river discharge throughout the 21st century influenced by changes in climate, land use, and atmospheric CO2. Geophys Res Lett 41:4978–4986.  https://doi.org/10.1002/2014gl060361 CrossRefGoogle Scholar
  111. Tarpanelli A, Amarnath G, Brocca L, Massari C, Moramarco T (2017) Discharge estimation and forecasting by MODIS and altimetry data in Niger-Benue River. Remot Sens Env 195:96–106.  https://doi.org/10.1016/j.rse.2017.04.015 CrossRefGoogle Scholar
  112. Tarpanelli A, Santi E, Tourian MJ, Filippucci P, Amarnath G, Brocca L (2018) Daily river discharge estimates by merging satellite optical sensors and radar altimetry through artificial neural network. IEEE Trans Geosci Remote Sens 10:15–20.  https://doi.org/10.1109/tgrs.2018.2854625 CrossRefGoogle Scholar
  113. Torres RR, Tsimplis MN (2012) Seasonal sea level cycle in the Caribbean Sea. J Geophys Res 117:C07011CrossRefGoogle Scholar
  114. Trenberth KE, Smith L, Qian T, Dai A, Fasullo J (2007) Estimates of the global water budget and its annual cycle using observational and model data. J Hydrometeorol 8:758–769.  https://doi.org/10.1175/JHM600.1 CrossRefGoogle Scholar
  115. Tsimplis MN, Woodworth PL (1994) The global distribution of the seasonal sea level cycle calculated from coastal tide gauge data. J Geophys Res 99(C8):16031–16039CrossRefGoogle Scholar
  116. Vignudelli S, Kostianoy A, Cipollini P, Benveniste J (2011) Coastal altimetry. Springer, Berlin, p 565CrossRefGoogle Scholar
  117. Vinogradov SV, Ponte RM (2011) Low-frequency variability in coastal sea level from tide gauges and altimetry. J Geophys Res 116:C07006CrossRefGoogle Scholar
  118. Volkov DL, Johns WE, Belonenko TV (2016) Dynamic response of the Black Sea elevation to intraseasonal fluctuations of the Mediterranean sea level. Geophys Res Lett 43:283–290.  https://doi.org/10.1002/2015gl066876 CrossRefGoogle Scholar
  119. Walker ND, Gargion GF, Rouse LJ, Biggs DC (1994) The great flood of summer 1993: Mississippi river discharge studied. EOS Trans Am Geophys Union 75:36Google Scholar
  120. Wijesekera HW et al (2016) ASIRI: an ocean-atmosphere initiative for Bay of Bengal. Bull Am Meteor Soc 97(10):1859–1884.  https://doi.org/10.1175/BAMS-D-14-00197.1 CrossRefGoogle Scholar
  121. Wu H, Zhu J, Shen J, Wang H (2011) Tidal modulation on the Changjiang River plume in summer. J Geophys Res 116:08017.  https://doi.org/10.1029/2011JC007209 CrossRefGoogle Scholar
  122. Wu H, Shen J, Zhu J, Zhang J, Li L (2014) Characteristics of the Changjiang plume and its extension along the Jiangsu Coast. Cont Shelf Res 76:108–123.  https://doi.org/10.1016/j.csr.2014.01.007 CrossRefGoogle Scholar
  123. Xu K, Milliman JD (2009) Seasonal variations of sediment discharge from the Yangtze River before and after impoundment of the Three Gorges Dam. Geomorphology 104:276–283.  https://doi.org/10.1016/j.geomorph.2008.09.004 CrossRefGoogle Scholar
  124. Yankovsky AE (2000) The cyclonic turning and propagation of buoyant coastal discharge along the shelf. J Mar Res 58:585–607CrossRefGoogle Scholar
  125. Ye F, Zhang YJ, Friedrichs MAM, Wang HV, Irby ID, Shen J, Wang Z (2016) A 3D, cross-scale, baroclinic model with implicit vertical transport for the Upper Chesapeake Bay and its tributaries. Ocean Model 107:82–96.  https://doi.org/10.1016/j.ocemod.2016.10.004 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.LEGOSUniversité de Toulouse, CNES, CNRS, IRD, UPSToulouseFrance
  2. 2.Woods Hole Oceanographic InstitutionWoods HoleUSA
  3. 3.LIENSsUniversité de La Rochelle, CNRSLa RochelleFrance
  4. 4.Indo-French Cell for Water SciencesIndian Institute of ScienceBangaloreIndia
  5. 5.Institute of Water and Flood ManagementBangladesh University of Engineering and TechnologyDhakaBangladesh
  6. 6.Atmospheric and Environmental Research, Inc.LexingtonUSA

Personalised recommendations