Advertisement

Surveys in Geophysics

, Volume 40, Issue 3, pp 631–656 | Cite as

Variability and Uncertainty Challenges in Scaling Imaging Spectroscopy Retrievals and Validations from Leaves Up to Vegetation Canopies

  • Zbyněk MalenovskýEmail author
  • Lucie Homolová
  • Petr Lukeš
  • Henning Buddenbaum
  • Jochem Verrelst
  • Luis Alonso
  • Michael E. Schaepman
  • Nicolas Lauret
  • Jean-Philippe Gastellu-Etchegorry
Article

Abstract

Imaging spectroscopy of vegetation requires methods for scaling and generalizing optical signals that are reflected, transmitted and emitted in the solar wavelength domain from single leaves and observed at the level of canopies by proximal sensing, airborne and satellite spectroradiometers. The upscaling embedded in imaging spectroscopy retrievals and validations of plant biochemical and structural traits is challenged by natural variability and measurement uncertainties. Sources of the leaf-to-canopy upscaling variability and uncertainties are reviewed with respect to: (1) implementation of retrieval algorithms and (2) their parameterization and validation of quantitative products through in situ field measurements. The challenges are outlined and discussed for empirical and physical leaf and canopy radiative transfer modelling components, considering both forward and inverse modes. Discussion on optical remote sensing validation schemes includes also description of a multiscale validation concept and its advantages. Impacts of intraspecific and interspecific variability on collected field and laboratory measurements of leaf biochemical traits and optical properties are demonstrated for selected plant species, and field measurement uncertainty sources are listed and discussed specifically for foliar pigments and canopy leaf area index. The review concludes with the main findings and suggestions as how to reduce uncertainties and include variability in scaling vegetation imaging spectroscopy signals and functional traits of single leaves up to observations of whole canopies.

Keywords

Quantitative remote sensing Imaging spectroscopy Retrieval of vegetation traits Radiative transfer models Inversion Variability Uncertainty Scaling Multiscale validation 

Notes

Acknowledgements

The contribution of ZM was supported by the Australian Research Council Future Fellowship: Bridging scales in remote sensing of vegetation stress (FT160100477). The work of LH and PL was supported by the Ministry of Education, Youth and Sports of the Czech Republic by the National Sustainability Program I (NPU I) from Grant Number LO1415. The German Aerospace Center (DLR) and the Federal Ministry of Economics and Technology supported HB within the framework of the EnMAP project (Contract No. 50 EE 1530). JV was supported by the European Research Council (ERC) under the ERC-2017-STG SENTIFLEX project (Grant Agreement 755617). The University of Zurich Research Priority Program on Global Change and Biodiversity (URPP GCB) supported the contribution of MES. The authors acknowledge constructive comments provided by the reviewers that helped to improve the quality of the manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Albert CH, Thuiller W, Yoccoz NG, Douzet R, Aubert S, Lavorel S (2010) A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Funct Ecol 24:1192–1201Google Scholar
  2. Albrechtová J, Janáček J, Lhotáková Z, Radochová B, Kubínová L (2007) Novel efficient methods for measuring mesophyll anatomical characteristics from fresh thick sections using stereology and confocal microscopy: application on acid rain-treated Norway spruce needles. J Exp Bot 58:1451–1461Google Scholar
  3. Allen R, Wette F (1969) Calculation of dynamical surface properties of noble-gas crystals. I. The quasiharmonic approximation. Phys Rev 179:873Google Scholar
  4. Amato U, Antoniadis A, Carfora MF, Colandrea P, Cuomo V, Franzese M, Pignatti S, Serio C (2013) Statistical classification for assessing PRISMA hyperspectral potential for agricultural land use. IEEE J Sel Top Appl Earth Observ Remote Sens 6:615–625Google Scholar
  5. Atherton J, Olascoaga B, Alonso L, Porcar-Castell A (2017) Spatial Variation of leaf optical properties in a boreal forest is influenced by species and light environment. Front Plant Sci 8:309Google Scholar
  6. Atzberger C, Richter K (2012) Spatially constrained inversion of radiative transfer models for improved LAI mapping from future Sentinel-2 imagery. Remote Sens Environ 120:208–218Google Scholar
  7. Auger S, Shipley B (2013) Inter-specific and intra-specific trait variation along short enviromental gradients in an old-growth temperate forest. J Veg Sci 24:419–428Google Scholar
  8. Bachmann M, Adar S, Ben-Dor E, Biesemans J, Briottet X, Grant M, Hanus J, Holzwarth S, Hueni A, Kneubuehler M et al (2011) Towards agreed data quality layers for airborne hyperspectral imagery. In: Proceedings of the 7th EARSeL-SIG-IS, Edinburgh, UK, 11–13 April 2011Google Scholar
  9. Bachmann M, Makarau A, Segl K, Richter R (2015) Estimating the influence of spectral and radiometric calibration uncertainties on EnMAP data products—examples for ground reflectance retrieval and vegetation indices. Remote Sens-Basel 7:10689–10714Google Scholar
  10. Bacour C, Baret F, Béal D, Weiss M, Pavageau K (2006) Neural network estimation of LAI, fAPAR, fCover and LAIxCab, from top of canopy MERIS reflectance data: principles and validation. Remote Sens Environ 105:313–325Google Scholar
  11. Baldocchi DD, Falge E, Gu L, Olson R, Hollinger DY, Running SW, Anthoni P, Bernhofer C, Davis KJ, Evans R, Fuentes J et al (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82:2415–2434Google Scholar
  12. Bao Y, Ni W, Wang D, Yue C, He H, Verbeeck H (2018) Effects of tree trunks on estimation of clumping index and LAI from HemiView and terrestrial LiDAR. Forests 9:144Google Scholar
  13. Baraloto C, Paine TCE, Patiño S, Bonal D, Hérault B, Chave J (2010) Functional trait variation and sampling strategies in species-rich plant communities. Funct Ecol 24:208–216Google Scholar
  14. Baret F, Weiss M, Allard D, Garrigues S, Leroy M, Jeanjean H et al (2005) VALERI: a network of sites and a methodology for the validation of medium spatial resolution land satellite products. Remote Sens Environ 76:36–39Google Scholar
  15. Baret F, Morissette J, Fernandes R, Champeaux JL, Myneni R, Chen J, Plummer S, Weiss M, Bacour C, Garrigue S et al (2006) Evaluation of the representativeness of networks of sites for the global validation and inter-comparison of land biophysical products. Proposition of the CEOS-BELMANIP. IEEE T Geosci Remote 44:1794–1803Google Scholar
  16. Baret F, Hagolle O, Geiger B, Bicheron P, Miras B, Huc M, Berthelot B, Nino F, Weiss M, Samain O et al (2007) LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: part 1: principles of the algorithm. Remote Sens Environ 110:275–286Google Scholar
  17. Barry K, Newnham G, Stone C (2009) Estimation of chlorophyll content in Eucalyptus globulus foliage with the leaf reflectance model PROSPECT. Agric For Meteorol 149:1209–1213Google Scholar
  18. Bréda NJJ (2003) Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. J Exp Bot 54:2403–2417Google Scholar
  19. Breece H, Holmes R (1971) Bidirectional scattering characteristics of healthy green soybean and corn leaves in vivo. Appl Opt 10:119–127Google Scholar
  20. Buddenbaum H, Stern O, Stellmes M, Stoffels J, Pueschel P, Hill J, Werner W (2012) Field imaging spectroscopy of beech seedlings under dryness stress. Remote Sens-Basel 4:3721–3740Google Scholar
  21. Buddenbaum H, Rock G, Hill J, Werner W (2015a) Measuring stress reactions of beech seedlings with PRI, fluorescence, temperatures and emissivity from VNIR and thermal field imaging spectroscopy. Eur J Remote Sens 48:263–282Google Scholar
  22. Buddenbaum H, Stern O, Paschmionka B, Hass E, Gattung T, Stoffels J, Hill J, Werner W et al (2015b) Using VNIR and SWIR field imaging spectroscopy for drought stress monitoring of beech seedlings. Int J Remote Sens 36:4590–4605Google Scholar
  23. Calders K, Newnham G, Burt A, Murphy S, Raumonen P, Herold M, Culvenor D, Avitabile V, Disney M, Armston J, Kaasalainen M (2015) Nondestructive estimates of above- ground biomass using terrestrial laser scanning. Methods Ecol Evol 6:198–208Google Scholar
  24. Camps-Valls G, Verrelst J, Muoz-Mar J, Laparra V, Mateo-Jimenez F, Gomez-Dans J (2016) A survey on Gaussian processes for earth observation data analysis. IEEE Geosci Remote Sens Mag 4:58–78Google Scholar
  25. Cerovic ZG, Masdoumier G, Ghozlen NB, Latouche G (2012) A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiol Plant 146:251–260Google Scholar
  26. Chen JM, Rich PM, Gower ST, Norman JM, Plummer SE (1997) Leaf area index of boreal forests: theory, techniques and measurements. J Geophys Res 102:29429–429443Google Scholar
  27. Claverie M, Vermote EF, Franch B, Masek JG (2015) Evaluation of the Landsat-5 TM and Landsat-7 ETM+ surface reflectance products. Remote Sens Environ 109:390–403Google Scholar
  28. Cohen W, Justice C (1999) Validating MODIS terrestrial ecology products: linking in situ and satellite measurements. Remote Sens Environ 70:1–4Google Scholar
  29. Collis DG, Harris JWE (1973) Line-throwing gun and cutter for obtaining branches from tree crowns. Can J For Res 3:149–154Google Scholar
  30. Combal B, Baret F, Weiss M, Trubuil A, Macé D, Pragnère A, Myneni R, Knyazikhin Y, Wang L (2002) Retrieval of canopy biophysical variables from bidirectional reflectance. Using prior information to solve the ill-posed inverse problem. Remote Sens Environ 84:1–15Google Scholar
  31. Cooper GF, Herskovits E (1992) A Bayesian method for the induction of probabilistic networks from data. Mach Learn 9:309–347Google Scholar
  32. Corbari C, Sobrino JA, Mancini M, Hidalgo V (2013) Mass and energy flux estimates at different spatial resolutions in a heterogeneous area through a distributed energy-water balance model and remote-sensing data. Int J Remote Sens 34:3208–3230Google Scholar
  33. Croft H, Chen J, Wang R, Mo G, Luo S, Luo X, He L, Gonsamo A, Arabian J, Zhang Y, Simic-Milas A et al The global distribution of leaf chlorophyll content. Remote Sens Environ (in review)Google Scholar
  34. Dawson TP, Curran PJ, Plummer SE (1998) LIBERTY—modeling the effects of leaf biochemical concentration on reflectance spectra. Remote Sens Environ 65:50–60Google Scholar
  35. de Bello F, Lavorel S, Albert CH, Thuiller W, Grigulis K, Dolezal J, Janeček S, Lepš J (2011) Quantifying the relevance of intraspecific trait variability for functional diversity. Methods Ecol Evol 2(2):163–174Google Scholar
  36. Delegido J, Alonso L, González G, Moreno J (2010) Estimating chlorophyll content of crops from hyperspectral data using a normalized area over reflectance curve (NAOC). Int J Appl Earth Obs 12:165–174Google Scholar
  37. Dungan JL (2001) Scaling up and scaling down: the relevance of the support effect on remote sensing of vegetation. In: Tate NJ, Atkinson PM (eds) Modelling scale in geographic information science. Wiley, Chichester, p 277Google Scholar
  38. Eckrich CA, Flaherty EA, Ben-David M (2013) Estimating leaf area index in Southeast Alaska: a comparison of two techniques. PLoS ONE 8:e77642Google Scholar
  39. Feng M, Huang Ch, Channan S, Vermote EF, Masek JG, Townshend JR (2012) Quality assessment of Landsat surface reflectance products using MODIS data. Comput Geosci 38:9–22Google Scholar
  40. Féret J-B, Asner GP (2011) Spectroscopic classification of tropical forest species using radiative transfer modeling. Remote Sens Environ 115:2415–2422Google Scholar
  41. Féret J-B, Francois C, Asner GP, Gitelson AA, Martin RE, Bidel LPR, Ustin SL, le Maire G, Jacquemoud S (2008) PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens Environ 112:3030–3043Google Scholar
  42. Féret J-B, Gitelson AA, Noble SD, Jacquemoud S (2017) PROSPECT-D: towards modeling leaf optical properties through a complete lifecycle. Remote Sens Environ 193:204–215Google Scholar
  43. Fernandes R, Plummer S, Nightingale J, Baret F, Camacho F, Fang H, Garrigues S, Gobron N, Lang M, Lacaze R, Leblanc S, Meroni M, Martinez B, Nilson T, Pinty B, Pisek J, Sonnentag O, Verger A, Welles J, Weiss M, Widlowski JL (2014) Global leaf area index product validation good practices. Version 2.0. In: Schaepman-Strub G, Román M, Nickeson J (eds) Best practice for satellite-derived land product validation. Land Product Validation Subgroup (WGCV/CEOS), p 76Google Scholar
  44. Gamon JA, Rahman AF, Dungan JL, Schildhauer M, Huemmrich KF (2006) Spectral Network (SpecNet): what is it and why do we need it? Remote Sens Environ 103:227–235Google Scholar
  45. Gamon JA, Somers B, Malenovský Z, Middleton EM, Rascher U, Schaepman ME (2019) Assessing vegetation function with imaging spectroscopy. Surv Geophys.  https://doi.org/10.1007/s10712-019-09511-5
  46. Garrigues S, Lacaze R, Baret F, Morisette J, Weiss M, Nickeson J, Fernandes R, Plummer S, Shabanov NV, Myneni R et al (2008a) Validation and intercomparison of global leaf area index products derived from remote sensing data. J Geophys Res 113:G02028Google Scholar
  47. Garrigues S, Shabanov NV, Swanson K, Morisette JT, Baret F, Myneni RB (2008b) Intercomparison and sensitivity analysis of leaf area index retrievals from LAI-2000, AccuPAR, and digital hemispherical photography over croplands. Agric For Meteorol 148:1193–1209Google Scholar
  48. Gascon F, Bouzinac C, Thépaut O, Jung M, Francesconi B, Louis J, Lonjou V, Lafrance B et al (2017) Copernicus Sentinel-2A calibration and products validation status. Remote Sens-Basel 9:584Google Scholar
  49. Gastellu-Etchegorry JP, Demarez V, Pinel V, Zagolski F (1996) Modeling radiative transfer in heterogeneous 3-D vegetation canopies. Remote Sens Environ 58:131–156Google Scholar
  50. Gastellu-Etchegorry JP, Lauret N, Yin T, Landier L, Kallel A, Malenovský Z et al (2017) DART: recent advances in remote sensing data modeling with atmosphere, polarization, and chlorophyll fluorescence. IEEE J Sel Top Appl 10:2640–2649Google Scholar
  51. GCOS (2011) Systematic observation requirements for satellite-based products for climate, 2011 Update, Supplemental Details to the Satellite-Based Component of the Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC. GCOS-154: 138Google Scholar
  52. Gorroño J, Fomferra N, Peters M, Gascon F, Underwood CI, Fox NP, Kirches G, Brockmann C (2017) A radiometric uncertainty tool for the Sentinel 2 mission. Remote Sens-Basel 9:178Google Scholar
  53. Govaerts Y, Verstraete MM (1998) Raytran: a Monte Carlo ray-tracing model to compute light scattering in three-dimensional heterogeneous media. IEEE Trans Geosci Remote 36:493–505Google Scholar
  54. Guanter L, Kaufmann H, Segl K, Foerster S, Rogass C, Chabrillat S, Kuester T, Hollstein A, Rossner G, Chlebek C, Straif C et al (2015) The EnMAP spaceborne imaging spectroscopy mission for earth observation. Remote Sens-Basel 7:8830–8857Google Scholar
  55. Homolová L, Malenovský Z, Clevers JGPW, García-Santos G, Schaepman ME (2013) Review of optical-based remote sensing for plant trait mapping. Ecol Complex 15:1–16Google Scholar
  56. Hovi A, Raitio P, Rautiainen M (2017) A spectral analysis of 25 boreal tree species. Silva Fenn 51:7753Google Scholar
  57. Hueni A, Nieke J, Schopfer J, Kneubühler M, Itten K (2009) The spectral database SPECCHIO for improved long term usability and data sharing. Comput Geosci 37:861–873Google Scholar
  58. Hueni A, Lenhard K, Baumgartner A, Schaepman ME (2013) The APEX (airborne prism experiment-imaging spectrometer) calibration information system. IEEE Trans Geosci Remote Sens 51(11):5169–5180Google Scholar
  59. Hueni A, Damm A, Kneubuehler M, Schläpfer D, Schaepman ME (2017) Field and airborne spectroscopy cross validation—some considerations. IEEE J Sel Top Appl 10:1117–1135Google Scholar
  60. Humplík JF, Lazár D, Husičková A, Spíchal L (2015) Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses—review. Plant Methods 11:29Google Scholar
  61. Jacquemoud S, Baret F (1990) PROSPECT: a model of leaf optical properties spectra. Remote Sens Environ 34:75–91Google Scholar
  62. Janoutová R, Homolová L, Malenovský Z, Hanuš J, Lauret N, Gastellu-Etchegorry JP (2019) Influence of 3D spruce tree representation on accuracy of airborne and satellite forest reflectance simulated in DART. Forests 10:292Google Scholar
  63. Jay S, Bendoula R, Hadoux X, Féret B, Gorretta N (2016) A physically-based model for retrieving foliar biochemistry and leaf orientation using close-range imaging spectroscopy. Remote Sens Environ 177:220–236Google Scholar
  64. Jonckheere I, Fleck S, Nackaerts K, Muys B, Coppin P, Weiss M, Baret F (2004) Review of methods for in situ leaf area index determination Part I. Theories, sensors and hemispherical photography. Agric For Meteorol 121:19–35Google Scholar
  65. Justice C, Belward A, Morisette J, Lewis P, Privette J, Baret F (2000) Developments in the ‘validation’ of satellite sensor products for the study of the land surface. Int J Remote Sens 21(17):3383–3390Google Scholar
  66. Juszak I, Iturrate-Garcia M, Gastellu-Etchegorry JP, Schaepman ME, Maximov TC, Schaepman-Strub G (2017) Drivers of shortwave radiation fluxes in Arctic tundra across scales. Remote Sens Environ 193:86–102Google Scholar
  67. Kanning M, Kühling I, Trautz D, Jarmer T (2018) High-resolution UAV-based hyperspectral imagery for LAI and chlorophyll estimations from wheat for yield prediction. Remote Sens 10:2000Google Scholar
  68. Kattge J, Díaz S, Lavorel S, Prentice IC, Leadley P et al (2011) TRY—a global database of plant traits. Glob Change Biol 17:2905–2935Google Scholar
  69. Kimes D, Knyazhikhin Y, Privette J, Abuelgasim A, Gao F (2000) Inversion methods for physically-based models. Remote Sens Rev 18:381–439Google Scholar
  70. Knipling E (1970) Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sens Environ 1:155–159Google Scholar
  71. Knyazikhin Y, Schull MA, Stenberg P, Mõttus M, Rautiainen M, Yang Y, Marshak A, Carmona PL, Kaufmann RK, Lewis P, Disney MI et al (2013) Hyperspectral remote sensing of foliar nitrogen content. Proc Natl Acad Sci USA 110:E185–E192Google Scholar
  72. Kokaly RF, Asner GP, Ollinger SV, Martin ME, Wessman CA (2009) Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sens Environ 113:S78–S91Google Scholar
  73. Kükenbrink D, Hueni A, Schneider FD, Damm A, Gastellu-Etchegorry JP, Schaepman ME, Morsdorf F (2019) Mapping the irradiance field of a single tree: quantifying vegetation induced adjacency effects. IEEE Trans Geosci Remote.  https://doi.org/10.1109/tgrs.2019.2895211 Google Scholar
  74. Kuusk A, Kuusk J, Lang J (2014) Modeling directional forest reflectance with the hybrid type forest reflectance model FRT. Remote Sens Environ 49:196–204Google Scholar
  75. Laurent VCE, Verhoef W, Damm A, Schaepman ME, Clevers JGPW (2013) A Bayesian object-based approach for estimating vegetation biophysical and biochemical variables from APEX at-sensor radiance data. Remote Sens Environ 139:6–17Google Scholar
  76. Laurent VCE, Schaepman ME, Verhoef W, Weyermann J, Chavez RO (2014) Bayesian object-based estimation of LAI and chlorophyll from a simulated Sentinel-2 top-of-atmosphere radiance image. Remote Sens Environ 140:318–329Google Scholar
  77. Lewis P (1999) Three-dimensional plant modelling for remote sensing simulation studies using the botanical plant modelling system. Agron Agric Environ 19:185–210Google Scholar
  78. Liang S (2004) Quantitative remote sensing of land surfaces. Wiley, Hoboken. ISBN 0-471-28166-2Google Scholar
  79. Lichtenthaler HK, Ač A, Marek MV, Kalina J, Urban O (2007) Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiol Biochem 45:577–588Google Scholar
  80. Liu Z, Chen JM, Jin G, Qi Y (2015) Estimating seasonal variations of leaf area index using litterfall collection and optical methods in four mixed evergreen-deciduous forests. Agric For Meteorol 209–210:36–48Google Scholar
  81. Lucieer A, Malenovský Z, Veness T, Wallace L (2014) HyperUAS—imaging spectroscopy from a multi-rotor unmanned aircraft system. J Field Robot 31:571–590Google Scholar
  82. Lukeš P, Stenberg P, Rautiainen M, Mottus M, Vanhatalo K (2013) Optical properties of leaves and needles for boreal tree species in Europe. Remote Sens Lett 4:667–676Google Scholar
  83. Lukeš P, Homolová L, Navrátil M, Hanuš J (2017) Assessing the consistency of optical properties measured in four integrating spheres. Int J Remote Sens 38:3817–3830Google Scholar
  84. Lyapustin A, Wang Y, Xiong X, Meister G, Platnick S, Levy R, Franz B, Korkin S, Hilker T, Tucker J, Hall F, Sellers P, Wu A, Angal A (2014) Scientific impact of MODIS C5 calibration degradation and C6+ improvements. Atmos Meas Tech 7:4353–4365Google Scholar
  85. Macfarlane C, Arndt SK, Livesley SJ, Edgar AC, White DA, Adams MA, Eamus D (2007) Estimation of leaf area index in eucalypt forest with vertical foliage, using cover and fullframe fisheye photography. For Ecol Manag 242:756–763Google Scholar
  86. Malenovský Z, Albrechtová J, Lhotáková Z, Zurita-Milla R, Clevers JGPW, Schaepman ME, Cudlín P (2006) Applicability of the PROSPECT model for Norway spruce needles. Int J Remote Sens 27:5315–5340Google Scholar
  87. Malenovský Z, Bartholomeus HM, Acerbi-Junior FW, Schopfer JT, Painter TH, Epema GF, Bregt AK (2007) Scaling dimensions in spectroscopy of soil and vegetation. Int J Appl Earth Obs 9:137–164Google Scholar
  88. Malenovský Z, Homolová L, Zurita-Milla R, Lukeš P, Kaplan V, Hanuš J, Gastellu-Etchegorry JP, Schaepman ME (2013) Retrieval of spruce leaf chlorophyll content from airborne image data using continuum removal and radiative transfer. Remote Sens Environ 131:85–102Google Scholar
  89. Malenovský Z, Turnbull J, Lucieer A, Robinson SA (2015) Antarctic moss stress assessment based on chlorophyll, water content, and leaf density retrieved from imaging spectroscopy data. New Phytol 208:608–624Google Scholar
  90. Malenovský Z, Lucieer A, King D, Turnbull J, Robinson SA (2017) Unmanned aircraft system advances health mapping of fragile polar vegetation. Methods Ecol Evol 8:1842–1857Google Scholar
  91. Marceau DJ, Hay GJ (1999) Remote sensing contributions to the scale issue. Can J Remote Sens 25:357–366Google Scholar
  92. McGloin R, Šigut L, Havránková K, Dušek J, Pavelka M, Sedlák P (2018) Energy balance closure at a variety of ecosystems in Central Europe with contrasting topographies. Agric For Meteorol 248:418–431Google Scholar
  93. Moreno-Martínez Á, Camps-Valls G, Kattge J, Robinson N, Reichstein M et al (2018) A methodology to derive global maps of leaf traits using remote sensing and climate data. Remote Sens Environ 218:69–88Google Scholar
  94. Morisette JT, Baret F, Privette JL, Myneni RB, Nickeson JE, Garrigues S, Shabanov NV, Weiss M, Fernandes RA, Leblanc SG et al (2006) Validation of global moderate-resolution LAI products: a framework proposed within the CEOS land product validation subgroup. IEEE Trans Geosci Remote 44:1804–1817Google Scholar
  95. Mussche S, Samson R, Nachtergale L, De Schrijver A, Lemeur R, Lust N (2001) A comparison of optical and direct methods for monitoring the seasonal dynamics of leaf area index in deciduous forests. Silva Fenn 35:373–384Google Scholar
  96. Myneni RB, Hoffman S, Knyazikhin Y, Privette JL, Glassy J, Tian Y, Wang Y, Song X, Zhang Y, Smith GR et al (2002) Global products of vegetation leaf area and absorbed PAR from year one of MODIS data. Remote Sens Environ 83:214–231Google Scholar
  97. Niinemets Ü (2010) A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol Res 25:693–714Google Scholar
  98. Noda HM, Motohka T, Murakamii K, Muraoka H, Nasahara KN (2013) Accurate measurement of optical properties of narrow leaves and conifer needles with a typical integrating sphere and spectroradiometer. Plant Cell Environ 36:1903–1909Google Scholar
  99. North PRJ (1996) Three-dimensional forest light interaction model using a Monte Carlo method. IEEE Trans Geosci Remote 34:946–956Google Scholar
  100. Parry C, Blonquist JM, Bugbee B (2014) In situ measurement of leaf chlorophyll concentration: analysis of the optical/absolute relationship. Plant Cell Environ 37:2508–2520Google Scholar
  101. Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS et al (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234Google Scholar
  102. QA4EO Task Team (2009) A quality assurance framework for Earth Observation: Principles. http://qa4eo.org/docs/QA4EO_Principles_v4.0.pdf. Accessed 20 Sept 2017
  103. Rahman H, Verstraete M, Pinty B (1993) Coupled surface-atmosphere reflectance (CSAR) model 1. Model description and inversion on synthetic data. J Geophys Res 98:779–789Google Scholar
  104. Rautiainen M, Stenberg P (2005) Application of photon recollision probability in coniferous canopy reflectance simulations. Remote Sens Environ 96:98–107Google Scholar
  105. Rivera JP, Verrelst J, Leoneko G, Moreno J (2013) Multiple cost functions and regularization options for improved retrieval of leaf chlorophyll content and LAI through inversion of the PROSAIL model. Remote Sens 5:3280–3304Google Scholar
  106. Schaaf C, Gao F, Strahler A, Lucht W, Li X, Tsang T, Strugnell N, Zhang X, Jin Y et al (2002) First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens Environ 83:135–148Google Scholar
  107. Schaepman ME, Ustin SL, Plaza AJ, Painter TH, Verrelst J, Liang S (2009) Earth system science related imaging spectroscopy—an assessment. Remote Sens Environ 113:S123–S137Google Scholar
  108. Schaepman ME, Jehle M, Hueni A, D’Odorico P, Damm A, Weyerman J, Schneider F, Laurent V, Popp C, Seidel F et al (2015) Advanced radiometry measurements and Earth science applications with the Airborne Prism Experiment (APEX). Remote Sens Environ 158:207–219Google Scholar
  109. Schlerf M, Atzberger C (2006) Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data. Remote Sens Environ 100:281–294Google Scholar
  110. Schlerf M, Atzberger C, Hill J, Buddenbaum H, Werner W, Schüler G (2010) Retrieval of chlorophyll and nitrogen in Norway spruce (Picea abies L. Karst.) using imaging spectroscopy. Int J Appl Earth Obs 12:17–26Google Scholar
  111. Schneider FD, Leiterer R, Morsdorf F, Gastellu-Etchegorry JP, Lauret N, Pfeifer N, Schaepman ME (2014) Simulating imaging spectrometer data: 3D forest modeling based on LiDAR and in situ data. Remote Sens Environ 152:235–250Google Scholar
  112. Schneider FD, Morsdorf F, Schmid B, Petchey OL, Hueni A, Schimel DS, Schaepman ME (2017) Mapping functional diversity from remotely sensed morphological and physiological forest traits. Nat Commun 8:1441Google Scholar
  113. Schneider FD, Kükenbrink D, Schaepman ME, Schimel DS, Morsdorf F (2019) Quantifying 3D structure and occlusion in dense tropical and temperate forests using close-range LiDAR. Agric For Meteorol 268:249–257Google Scholar
  114. Singh A, Serbin SP, McNeil BE, Kingdon CC, Townsend PA (2015) Imaging spectroscopy algorithms for mapping canopy foliar chemical and morphological traits and their uncertainties. Ecol Appl 25:2180–2197Google Scholar
  115. Sobrino JA, Franch B, Mattar C, Jiménez-Muñoz JC, Corbari C (2012) A method to estimate soil moisture from Airborne Hyperspectral Scanner (AHS) and ASTER data: application to SEN2FLEX and SEN3EXP campaigns. Remote Sens Environ 117:415–428Google Scholar
  116. Stuckens J, Verstraeten W, Delalieux S, Swennen R, Coppin P (2009) A dorsiventral leaf radiative transfer model: development, validation and improved model inversion techniques. Remote Sens Environ 113:2560–2573Google Scholar
  117. Thimonier A, Sedivy I, Schleppi P (2010) Estimating leaf area index in different types of mature forest stands in Switzerland: a comparison of methods. Eur J For Res 129:543–562Google Scholar
  118. Turner D, Ritts W, Zhao M, Kurc S, Dunn A, Wofsy S, Small E, Running S (2006) Assessing interannual variation in MODIS-based estimates of gross primary production. IEEE Trans Geosci Remote 44:1899–1907Google Scholar
  119. Ustin SL, Gitelson AA, Jacquemoud S, Schaepman ME, Asner GP, Gamon JA, Zarco-Tejada P (2009) Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sens Environ 113:S67–S77Google Scholar
  120. Van Der Tol C, Verhoef W, Timmermans J, Verhoef A, Su Z (2009) An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance. Biogeosciences 6(12):3109–3129Google Scholar
  121. Verhoef W (1984) Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote Sens Environ 16:125–141Google Scholar
  122. Vermote EF, Saleous NZ, Justice CO (2002) Atmospheric correction of MODIS data in the visible to middle infrared: first results. Remote Sens Environ 83:97–111Google Scholar
  123. Vermote E, Justice C, Claverie M, Franch B (2016) Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens Environ 185:46–56Google Scholar
  124. Verrelst J, Rivera-Caicedo J (2017) A global sensitivity analysis toolbox to quantify drivers of vegetation radiative transfer models. In: Petropoulos G, Srivastava PK (eds) sensitivity analysis in earth observation modelling. Elsevier, Amsterdam, pp 319–339Google Scholar
  125. Verrelst J, Alonso L, Camps-Valls G, Delegido J, Moreno J (2012) Retrieval of vegetation biophysical parameters using Gaussian process techniques. IEEE Trans Geosci Remote Sens 50:1832–1843Google Scholar
  126. Verrelst J, Alonso L, Rivera-Caicedo J, Moreno J, Camps-Valls G (2013) Gaussian process retrieval of chlorophyll content from imaging spectroscopy data. IEEE J Sel Top Appl Earth Observ Remote Sens 6:867–874Google Scholar
  127. Verrelst J, Malenovský Z, van der Tol C, Camps-Valls G, Gastellu-Etchegorry JP, Lewis P, North P, Moreno J (2019) Quantifying vegetation biophysical variables from imaging spectroscopy data: a review on retrieval methods. Surv Geophys.  https://doi.org/10.1007/s10712-018-9478-y
  128. Vilfan N, van der Tol C, Muller O, Rascher O, Verhoef W (2016) Fluspect-B: a model for leaf fluorescence, reflectance and transmittance spectra. Remote Sens Environ 186:596–615Google Scholar
  129. Vilfan N, van der Tol C, Yang P, Wyber R, Malenovský Z, Robinson SA, Verhoef W (2018) Extending Fluspect to simulate xanthophyll driven leaf reflectance dynamics. Remote Sens Environ 211:345–356Google Scholar
  130. Wallace L, Lucieer A, Malenovský Z, Turner D, Vopěnka P (2016) Assessment of forest structure using two UAV techniques: a comparison of airborne laser scanning and structure from motion (SfM) point clouds. Forests 7:62Google Scholar
  131. Wang Z, Wang T, Darvishzadeh R, Skidmore AK, Jones S, Suarez L, Woodgate W, Heiden U, Heurich M, Hearne J (2016) Vegetation indices for mapping canopy foliar nitrogen in a mixed temperate forest. Remote Sens-Basel 8:491Google Scholar
  132. Weiss M, Baret F, Smith GJ, Jonckheere I, Coppin P (2004) Review of methods for in situ leaf area index (LAI) determination Part II. Estimation of LAI, errors and sampling. Agric For Meteorol 121:37–53Google Scholar
  133. Weiss M, Baret F, Block T, Koetz B, Burini A, Scholze B, Lecharpentier P, Brockmann C, Fernandes R et al (2014) On Line Validation Exercise (OLIVE): a web based service for the validation of medium resolution land products. Application to FAPAR products. Remote Sens-Basel 6:4190–4216Google Scholar
  134. Weyermann J, Damm A, Kneubühler M, Schaepman ME (2014) Correction of reflectance anisotropy effects of vegetation on airborne spectroscopy data and derived products. IEEE Trans Geosci Remote 52:616–627Google Scholar
  135. Widlowski JL, Taberner M, Pinty B, Bruniquel-Pinel V, Disney M, Fernandes R, Gastellu-Etchegorry JP, Gobron N, Kuusk A, Lavergne T, Leblanc S et al (2007) The third RAdiation transfer Model Intercomparison (RAMI) exercise: documenting progress in canopy reflectance modelling. J Geophys Res 112(D09111):28Google Scholar
  136. Widlowski JL, Pinty B, Lopatka M, Atzberger C, Buzica D, Chelle M, Disney M, Gastellu-Etchegorry JP, Gerboles M, Gobron N, Grau E et al (2013) The fourth radiation transfer model intercomparison (RAMI-IV): proficiency testing of canopy reflectance models with ISO-13528. J Geophys Res 118(D09111):13Google Scholar
  137. Widlowski JL, Mio C, Disney M, Adams J, Andredakis I, Atzberger C, Brennan J, Busetto L, Chelle M, Ceccherini G, Colombo R et al (2015) The fourth phase of the radiative transfer model intercomparison (RAMI) exercise: actual canopy scenarios and conformity testing. Remote Sens Environ 169:418–437Google Scholar
  138. Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemometr Intell Lab 58:109–130Google Scholar
  139. Wyber R, Malenovský Z, Ashcroft M, Osmond B, Robinson S (2017) Do daily and seasonal trends in leaf solar induced fluorescence reflect changes in photosynthesis, growth or light exposure? Remote Sens-Basel 9:604Google Scholar
  140. Zarco-Tejada PJ, González-Dugo V, Berni JAJ (2012) Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens Environ 117:322–337Google Scholar
  141. Zhang Y, Chen JM, Miller JR (2005) Determining digital hemispherical photograph exposure for leaf area index estimation. Agric For Meteorol 133(1–4):166–181Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Zbyněk Malenovský
    • 1
    • 2
    • 3
    Email author
  • Lucie Homolová
    • 2
  • Petr Lukeš
    • 2
  • Henning Buddenbaum
    • 4
  • Jochem Verrelst
    • 5
  • Luis Alonso
    • 5
  • Michael E. Schaepman
    • 6
  • Nicolas Lauret
    • 7
  • Jean-Philippe Gastellu-Etchegorry
    • 7
  1. 1.Surveying and Spatial Sciences Group, School of Technology, Environments and DesignUniversity of TasmaniaHobartAustralia
  2. 2.Global Change Research Institute CASRemote Sensing DepartmentBrnoCzech Republic
  3. 3.USRA/GESTAR, NASA Goddard Space Flight Center, Biospheric Sciences LaboratoryGreenbeltUSA
  4. 4.Environmental Remote Sensing and GeoinformaticsTrier UniversityTrierGermany
  5. 5.Image Processing Laboratory (IPL), Parc CientíficUniversitat de ValènciaPaterna, ValenciaSpain
  6. 6.Remote Sensing Laboratories, Department of GeographyUniversity of ZurichZurichSwitzerland
  7. 7.Centre d’Etudes Spatiales de la Biosphère - UPS, CNES, CNRS, IRDUniversité de ToulouseToulouse Cedex 9France

Personalised recommendations