Advertisement

Ground Data are Essential for Biomass Remote Sensing Missions

  • Jérôme ChaveEmail author
  • Stuart J. Davies
  • Oliver L. Phillips
  • Simon L. Lewis
  • Plinio Sist
  • Dmitry Schepaschenko
  • John Armston
  • Tim R. Baker
  • David Coomes
  • Mathias Disney
  • Laura Duncanson
  • Bruno Hérault
  • Nicolas Labrière
  • Victoria Meyer
  • Maxime Réjou-Méchain
  • Klaus Scipal
  • Sassan Saatchi
Article

Abstract

Several remote sensing missions will soon produce detailed carbon maps over all terrestrial ecosystems. These missions are dependent on accurate and representative in situ datasets for the training of their algorithms and product validation. However, long-term ground-based forest-monitoring systems are limited, especially in the tropics, and to be useful for validation, such ground-based observation systems need to be regularly revisited and maintained at least over the lifetime of the planned missions. Here we propose a strategy for a coordinated and global network of in situ data that would benefit biomass remote sensing missions. We propose to build upon existing networks of long-term tropical forest monitoring. To produce accurate ground-based biomass estimates, strict data quality must be guaranteed to users. It is more rewarding to invest ground resources at sites where there currently is assurance of a long-term commitment locally and where a core set of data is already available. We call these ‘supersites’. Long-term funding for such an inter-agency endeavour remains an important challenge, and we here provide costing estimates to facilitate dialogue among stakeholders. One critical requirement is to ensure in situ data availability over the lifetime of remote sensing missions. To this end, consistent guidelines for supersite selection and management are proposed within the Forest Observation System, long-term funding should be assured, and principal investigators of the sites should be actively involved.

Keywords

Biomass Calibration Forest In situ data Validation 

Notes

Acknowledgements

We thank the organizers of the ISSI ESA Meeting held in Bern, Switzerland, in November 2017 for stimulating discussions and for their invitation to submit this paper. We gratefully acknowledge funding by ‘Investissement d’Avenir’ programs managed by Agence Nationale de la Recherche (CEBA, ref. ANR-10-LABX-25-01; TULIP, ref. ANR-10-LABX-41), from CNES and from ESA (IFBN Project 4000114425/15/NL/FF/gp, as part of the BIOMASS mission program).

References

  1. Anderson-Teixeira KJ, Davies SJ, Bennett AC, Gonzalez-Akre EB, Muller-Landau HC, Wright SJ et al (2015) CTFS-Forest GEO: a worldwide network monitoring forests in an era of global change. Glob Change Biol 21:528–549CrossRefGoogle Scholar
  2. Ashton PS (1964) Ecological studies in the mixed dipterocarp forests of Brunei State. Clarendon Press, OxfordGoogle Scholar
  3. Asner GP, Powell GV, Mascaro J, Knapp DE, Clark JK, Jacobson J et al (2010) High-resolution forest carbon stocks and emissions in the Amazon. Proc Natl Acad Sci 107:16738–16742CrossRefGoogle Scholar
  4. Avitabile V, Herold M, Heuvelink GB, Lewis SL, Phillips OL, Asner GP et al (2016) An integrated pan-tropical biomass map using multiple reference datasets. Glob Change Biol 22:1406–1420CrossRefGoogle Scholar
  5. Baccini A, Goetz SJ, Walker WS, Laporte NT, Sun M, Sulla-Menashe D, Hackler J et al (2012) Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat Clim Change 2:182–185CrossRefGoogle Scholar
  6. Brede B, Lau A, Bartholomeus HM, Kooistra L (2017) Comparing RIEGL RiCOPTER UAV LiDAR derived canopy height and DBH with terrestrial LiDAR. Sensors 17:2371CrossRefGoogle Scholar
  7. Brown S, Lugo AE (1982) The storage and production of organic matter in tropical forests and their role in the global carbon cycle. Biotropica 14(3):161–187CrossRefGoogle Scholar
  8. Calders K, Origo N, Burt A, Disney MI, Nightingale J, Raumonen P, Åkerblom M, Malhi Y, Lewis P (2018) Realistic forest stand reconstruction from terrestrial LiDAR for radiative transfer modelling. Remote Sens 10:933CrossRefGoogle Scholar
  9. Castilho CV, Magnusson WE, de Araújo RN, Luizao RC, Luizao FJ, Lima AP, Higuchi N (2006) Variation in aboveground tree live biomass in a central Amazonian Forest: effects of soil and topography. For Ecol Manag 234:85–96CrossRefGoogle Scholar
  10. Chapman B, Kasischke ES (2018) Evaluation of above study region sites for future calibration and validation of Nisar Science requirements. In IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, pp 8279–8281Google Scholar
  11. Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WB et al (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Change Biol 20:3177–3190CrossRefGoogle Scholar
  12. Chazdon RL, Broadbent EN, Rozendaal DM, Bongers F, Zambrano AMA, Aide TM et al (2016) Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci Adv 2(5):e1501639CrossRefGoogle Scholar
  13. Clark DB, Clark DA (2000) Landscape-scale variation in forest structure and biomass in a tropical rain forest. For Ecol Manag 137:185–198CrossRefGoogle Scholar
  14. Clark DB, Kellner JR (2012) Tropical forest biomass estimation and the fallacy of misplaced concreteness. J Veg Sci 23:1191–1196CrossRefGoogle Scholar
  15. Condit R (1998) Tropical forest census plots: methods and results from Barro Colorado Island, Panama and a comparison with other plots. Springer, BerlinCrossRefGoogle Scholar
  16. Disney MI, Boni Vicari M, Calders K, Burt A, Lewis S, Raumonen P, Wilkes P (2018) Weighing trees with lasers: advances, challenges and opportunities. R Soc Interface Focus 8(2):20170048CrossRefGoogle Scholar
  17. Drake JB, Dubayah RO, Clark DB, Knox RG, Blair JB, Hofton MA et al (2002) Estimation of tropical forest structural characteristics using large-footprint lidar. Remote Sens Environ 79:305–319CrossRefGoogle Scholar
  18. Dubois-Fernandez PC, Le Toan T, Daniel S, Oriot H, Chave J, Blanc L et al (2012) The TropiSAR airborne campaign in French Guiana: objectives, description, and observed temporal behavior of the backscatter signal. IEEE Trans Geosci Remote Sens 50:3228–3241CrossRefGoogle Scholar
  19. Fridman J, Holm S, Nilsson M, Nilsson P, Ringvall AH, Ståhl G (2014) Adapting National Forest Inventories to changing requirements—the case of the Swedish National Forest Inventory at the turn of the 20th century. Silva Fennica 48(3):29CrossRefGoogle Scholar
  20. Frolking S, Palace MW, Clark DB, Chambers JQ, Shugart HH, Hurtt GC (2009) Forest disturbance and recovery: a general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure. J Geophys Res Biogeosci 114(G2):222CrossRefGoogle Scholar
  21. Gentry AH (1988) Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann Mo Bot Gard 75(1):1–34CrossRefGoogle Scholar
  22. Golley FB (1993) A history of the ecosystem concept in ecology: more than the sum of the parts. Yale University Press, New HavenGoogle Scholar
  23. Grassi G, House J, Dentener F, Federici S, den Elzen M, Penman J (2017) The key role of forests in meeting climate targets requires science for credible mitigation. Nat Clim Chang 7:220CrossRefGoogle Scholar
  24. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SAA, Tyukavina A et al (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853CrossRefGoogle Scholar
  25. IPCC (2018) Special report on global warming of 1.5 °C. https://www.ipcc.ch/sr15/
  26. Johnson MO, Galbraith D, Gloor M, De Deurwaerder H, Guimberteau M, Rammig A et al (2016) Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic global vegetation models. Glob Change Biol 22:3996–4013CrossRefGoogle Scholar
  27. Keeling HC, Phillips OL (2007) The global relationship between forest productivity and biomass. Glob Ecol Biogeogr 16:618–631CrossRefGoogle Scholar
  28. Labrière N, Tao S, Chave J, Scipal K, Le Toan T, Abernethy K et al (2018) In Situ reference datasets from the TropiSAR and AfriSAR campaigns in support of upcoming spaceborne biomass missions. IEEE J Sel Top Appl Earth Obs Remote Sens 99:1–11Google Scholar
  29. Lutz JA, Furniss TJ, Johnson DJ, Davies SJ, Allen D, Alonso A et al (2018) Global importance of large-diameter trees. Glob Ecol Biogeogr 27(7):849–864CrossRefGoogle Scholar
  30. Le Quéré C, Andrew RM, Friedlingstein P, Sitch S, Pongratz J, Manning AC et al (2018) Global carbon budget 2017. Earth Syst Sci Data 10:405–448CrossRefGoogle Scholar
  31. Le Toan T, Quegan S, Davidson MWJ, Balzter H, Paillou P, Papathanassiou K et al (2011) The BIOMASS mission: mapping global forest biomass to better understand the terrestrial carbon cycle. Remote Sens Environ 115:2850–2860CrossRefGoogle Scholar
  32. Lewis SL, Sonké B, Sunderland T, Begne SK, Lopez-Gonzalez G, Van Der Heijden GM et al (2013) Above-ground biomass and structure of 260 African tropical forests. Philos Trans R Soc B 368:20120295CrossRefGoogle Scholar
  33. Malhi Y, Wood D, Baker TR, Wright J, Phillips OL, Cochrane T, Meir P et al (2004) The regional variation of aboveground live biomass in old-growth Amazonian forests. Glob Change Biol 12:1107–1138CrossRefGoogle Scholar
  34. Martin AR, Doraisami M, Thomas SC (2018) Global patterns in wood carbon concentration across the world’s trees and forests. Nat Geosci 11(12):915CrossRefGoogle Scholar
  35. Mitchard ET, Feldpausch TR, Brienen RJ, Lopez-Gonzalez G, Monteagudo A, Baker TR et al (2014) Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites. Glob Ecol Biogeogr 23:935–946CrossRefGoogle Scholar
  36. Mokany K, Raison RJ, Prokushkin AS (2006) Critical analysis of root:shoot ratios in terrestrial biomes. Glob Change Biol 12:84–96CrossRefGoogle Scholar
  37. NASA-ESA-Smithsonian Workshop on Calibration and Validation of Upcoming Satellite Missions on Forest Structure and Biomass, Washington DC, 2016. (https://nisar.jpl.nasa.gov/files/nisar/NISAR_Vegetation_Biomass_Workshop_Report.pdf)
  38. Nogueira EM, Nelson BW, Fearnside PM (2006) Volume and biomass of trees in central Amazonia: influence of irregularly shaped and hollow trunks. For Ecol Manag 227:14–21CrossRefGoogle Scholar
  39. Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA et al (2011) A large and persistent carbon sink in the world’s forests. Science 1(2):1–3.  https://doi.org/10.1126/science.1201609 Google Scholar
  40. Paul KI, Roxburgh SH, Chave J, England JR, Zerihun A, Specht A et al (2016) Testing the generality of above-ground biomass allometry across plant functional types at the continent scale. Glob Change Biol 22:2106–2124CrossRefGoogle Scholar
  41. Paul KI, Larmour J, Specht A, Zerihun A, Ritson P, Roxburgh SH et al (2019) Testing the generality of below-ground biomass allometry across plant functional types. For Ecol Manag 432:102–114CrossRefGoogle Scholar
  42. Phillips J, Duque A, Scott C, Wayson C, Galindo G, Cabrera E et al (2016) Live aboveground carbon stocks in natural forests of Colombia. For Ecol Manag 374:119–128CrossRefGoogle Scholar
  43. Réjou-Méchain M, Muller-Landau HC, Detto M, Thomas SC, Toan TL, Saatchi SS et al (2014) Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks. Biogeosciences 11:5711CrossRefGoogle Scholar
  44. Réjou-Méchain M, Tanguy A, Piponiot C, Chave J, Hérault B (2017) Biomass: an r package for estimating above-ground biomass and its uncertainty in tropical forests. Methods Ecol Evol 8:1163–1167CrossRefGoogle Scholar
  45. Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ET, Salas W, Zutta BR et al (2011a) Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci USA 108:9899–9904CrossRefGoogle Scholar
  46. Saatchi S, Marlier M, Chazdon RL, Clark DB, Russell AE (2011b) Impact of spatial variability of tropical forest structure on radar estimation of aboveground biomass. Remote Sens Environ 115:2836–2849CrossRefGoogle Scholar
  47. Schimel D, Pavlick R, Fisher JB, Asner GP, Saatchi S, Townsend P et al (2015) Observing terrestrial ecosystems and the carbon cycle from space. Glob Change Biol 21:1762–1776CrossRefGoogle Scholar
  48. Shugart HH, Saatchi S, Hall FG (2010) Importance of structure and its measurement in quantifying function of forest ecosystems. J Geophys Res Biogeosci.  https://doi.org/10.1029/2009JG000993 Google Scholar
  49. Sillett SC, Van Pelt R, Carroll AL, Campbell-Spickler J, Coonen EJ, Iberle B (2019) Allometric equations for Sequoia sempervirens in forests of different ages. For Ecol Manag 433:349–363CrossRefGoogle Scholar
  50. Sist P, Rutishauser E, Peña-Claros M, Shenkin A, Hérault B, Blanc L et al (2015) The Tropical managed Forests Observatory: a research network addressing the future of tropical logged forests. Appl Veg Sci 18:171–174CrossRefGoogle Scholar
  51. Smith WB (2002) Forest inventory and analysis: a national inventory and monitoring program. Environ Pollut 116:S233–S242CrossRefGoogle Scholar
  52. Stegen JC, Swenson NG, Enquist BJ, White EP, Phillips OL, Jørgensen PM, Weiser MD, Mendoza AM, Vargas PN (2011) Variation in above-ground forest biomass across broad climatic gradients. Glob Ecol Biogeogr 20:744–754CrossRefGoogle Scholar
  53. Sullivan MJ, Talbot J, Lewis SL, Phillips OL, Qie L, Begne SK et al (2017) Diversity and carbon storage across the tropical forest biome. Scientific Rep 7:39102CrossRefGoogle Scholar
  54. Turner W, Rondinini C, Pettorelli N, Mora B, Leidner AK, Szantoi Z et al (2015) Free and open-access satellite data are key to biodiversity conservation. Biol Cons 182:173–176CrossRefGoogle Scholar
  55. Xu L, Saatchi SS, Shapiro A, Meyer V, Ferraz A, Yang Y et al (2017) Spatial distribution of carbon stored in forests of the Democratic Republic of Congo. Sci Rep 7:15030CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Jérôme Chave
    • 1
    Email author
  • Stuart J. Davies
    • 2
  • Oliver L. Phillips
    • 3
  • Simon L. Lewis
    • 3
    • 8
  • Plinio Sist
    • 4
  • Dmitry Schepaschenko
    • 5
  • John Armston
    • 6
  • Tim R. Baker
    • 3
  • David Coomes
    • 7
  • Mathias Disney
    • 8
    • 9
  • Laura Duncanson
    • 6
  • Bruno Hérault
    • 4
    • 10
  • Nicolas Labrière
    • 1
  • Victoria Meyer
    • 11
  • Maxime Réjou-Méchain
    • 12
  • Klaus Scipal
    • 13
  • Sassan Saatchi
    • 11
  1. 1.Université Toulouse 3 Paul Sabatier, CNRS, ENFAUMR 5174 Evolution et Diversité Biologique (EDB)ToulouseFrance
  2. 2.Center for Tropical Forest Science‐Forest Global Earth ObservatorySmithsonian Tropical Research InstituteWashingtonUSA
  3. 3.School of GeographyUniversity of LeedsLeedsUK
  4. 4.Cirad, Univ MontpellierUR Forests & SocietiesMontpellier Cedex 5France
  5. 5.International Institute for Applied Systems AnalysisLaxenburgAustria
  6. 6.Department of Geographical SciencesUniversity of MarylandCollege ParkUSA
  7. 7.Department of Plant Sciences, Forest Ecology and Conservation groupUniversity of CambridgeCambridgeUK
  8. 8.Department of GeographyUniversity College LondonLondonUK
  9. 9.UKNERC National Centre for Earth Observation (NCEO)SwindonUK
  10. 10.Institut National Polytechnique Félix Houphouët-BoignyINP-HBYamoussoukroIvory Coast
  11. 11.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  12. 12.AMAP, IRD, CNRS, CIRAD, INRAUniv MontpellierMontpellierFrance
  13. 13.ESA-ESTECNoordwijkThe Netherlands

Personalised recommendations