Advertisement

Surveys in Geophysics

, Volume 40, Issue 2, pp 277–293 | Cite as

Linear Vary-Chap Topside Electron Density Model with Topside Sounder and Radio-Occultation Data

  • Fabricio dos Santos ProlEmail author
  • David R. Themens
  • Manuel Hernández-Pajares
  • Paulo de Oliveira Camargo
  • Marcio Tadeu de Assis Honorato Muella
Article
  • 294 Downloads

Abstract

The Linear Vary-Chap function has received increased attention in describing the topside ionosphere due to its good performance for predicting and extrapolating radio-occultation (RO) electron density ionospheric profiles. The systematic increase in the scale height is consistent with first principles corresponding to the increase in the electron temperature; however, the altitude where the linear scale height approximation does not stay valid has not been explicitly discussed in the literature. In order to demonstrate up to what extent the linear behavior of the scale height is still valid, this work analyzes more than 50,000 manually scaled ionospheric profiles measured by topside sounders on board Alouette and International Satellites for Ionospheric Studies satellites. Based on this initial analysis, a new topside model is proposed to take into consideration the nonlinear behavior of the topside scale height. The proposed climatological model, a fit of spherical harmonics to parameters derived from topside RO profiles, is used to predict topside sounder measurements. An assessment of the predicted, RO-derived, topside is carried out and the experimental results are discussed in order to show the viability of extrapolating RO ionospheric profiles for altitudes above the low Earth orbit.

Keywords

Chapman function Scale height Ionospheric profile ISIS Alouette COSMIC/FORMOSAT-3 

Notes

Acknowledgements

This work was jointly funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP Grants: 2015/15027-7 and 2016/22011-2) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq Grants: 429885/2016-4, 310829/2017-8 and 309832/2016-0). The authors are grateful to UCAR (USA) and NSPO (Taiwan) for providing FORMOSAT-3/COSMIC RO data.

References

  1. Bilitza D, McKinnel LA, Reinisch B, Fuller-Rowell T (2011) The International Reference Ionosphere today and in the future. J Geod 85:909–920CrossRefGoogle Scholar
  2. Chapman S (1931) The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating Earth. Proc Phys Soc 43:26–45CrossRefGoogle Scholar
  3. Danzer J, Healy SB, Culverwell ID (2015) A simulation study with a new residual ionospheric error model for GPS radio occultation climatologies. Atmos Meas Tech 8:3395–3404CrossRefGoogle Scholar
  4. Davies K (1990) Ionospheric radio. Peter Peregrinus, LondonCrossRefGoogle Scholar
  5. Depuev VH, Pulinets SA (2004) A global empirical model of the ionospheric topside electron density. Adv Space Res 34:2016–2020CrossRefGoogle Scholar
  6. Fonda C, Coisson P, Nava B, Radicella SM (2005) Comparison of analytical functions used to describe topside electron density profiles with satellite data. Ann Geophys 48:491–495Google Scholar
  7. Hernández-Pajares M, Garcia-Fernàndez M, Rius A, Notarpietro R, von Engeln A, Olivares-Pulido G (2017) Electron density extrapolation above F2 peak by the Linear Vary-Chap model supporting new global navigation satellite systems-LEO occultation missions. J Geophys Res Space Phys 122:9003–9014CrossRefGoogle Scholar
  8. Kelley MC (2009) The Earth’s ionosphere: plasma physics and electrodynamics. Academic Press, Burlington, p 576Google Scholar
  9. Kutiev I, Marinov P (2007) Topside sounder model of scale height and transition height characteristics of the ionosphere. Adv Space Res 39:759–766CrossRefGoogle Scholar
  10. Lei J, Syndergaard S, Burns AG, Solomon SC, Wang W, Zeng Z, Roble RG, Wu Q, Kuo Y-H, Holt JM, Zhang S-R, Hysell DL, Rodrigues FS, Lin CH (2007) Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions: preliminary results. J Geophys Res 112:A07308Google Scholar
  11. Liu L, Le H, Chen Y, He M, Wan W, Yue X (2011) Features of the middle- and low-latitude ionosphere during solar minimum as revealed from COSMIC radio occultation measurements. J Geophys Res 116:A09307Google Scholar
  12. Llewellyn SK, Bent RB (1973) Documentation and description of the bent ionospheric model (Report AFCRL-TR-73-0657). Hanscom AFB, MassGoogle Scholar
  13. Mannucci AJ, Ao CO, Pi X, Iijima BA (2011) The impact of large scale ionospheric structure on radio occultation retrievals. Atmos Meas Tech 4:2837–2850CrossRefGoogle Scholar
  14. Nsumei P, Reinisch BW, Huang X, Bilitza D (2012) New Vary-Chap profile of the topside ionosphere electron density distribution for use with the IRI model and the GIRO real time data. Radio Sci 47:RS0L16CrossRefGoogle Scholar
  15. Olivares-Pulido G, Hernández-Pajares M, Aragón-Angel A, Garcia-Rigo A (2016) A linear scale height Chapman model supported by GNSS occultation measurements. J Geophys Res Space Phys 121:7932–7940CrossRefGoogle Scholar
  16. Pedatella NM, Forbes JM, Maute A, Richmond AD, Fang T-W, Larson KM, Millward G (2011) Longitudinal variations in the F region ionosphere and the topside ionosphere-plasmasphere: observations and model simulations. J Geophys Res 116:A12309CrossRefGoogle Scholar
  17. Prol FS, Hernández-Pajares M, Camargo PO, Muella MTAH (2018) Spatial and temporal features of the topside ionospheric electron density by a new model based on GPS radio occultation data. J Geophys Res Space Physics 123:2104–2115Google Scholar
  18. Qian L, Burns AG, Solomon SC, Wang W (2013) Annual/semiannual variation of the ionosphere. Geophys Res Lett 40:1928–1933CrossRefGoogle Scholar
  19. Radicella SM, Leitinger R (2001) The evolution of the DGR approach to model electron density profiles. Adv Space Res 27:35–40CrossRefGoogle Scholar
  20. Rawer K (1988) Synthesis of ionospheric electron density profiles with Epstein functions. Adv Space Res 8:191–198CrossRefGoogle Scholar
  21. Reinisch BW, Huang X, Belehaki A, Shi J, Zhang ML, Ilma R (2004) Modeling the IRI topside profile using scale heights from ground-based ionosonde measurements. Adv Space Res 34:2026–2031CrossRefGoogle Scholar
  22. Reinisch BW, Nsumei P, Huang X, Bilitza DK (2007) Modeling the F2 topside and plasmasphere for IRI using IMAGE/RPI, and ISIS data. Adv Space Res 39:731–738CrossRefGoogle Scholar
  23. Rishbeth H, Garriott OK (1969) Introduction to ionospheric physics. Academic Press, New YorkGoogle Scholar
  24. Sibanda P, McKinnel LA (2011) Topside ionospheric vertical electron density profile reconstruction using GPS and ionosonde data: possibilities for South Africa. Ann Geophys 29:229–236CrossRefGoogle Scholar
  25. Stankov SM, Jakowski N (2006) Topside ionospheric scale height analysis and modeling based on radio occultation measurements. J Atmos Solar Terr Phys 68:134–162CrossRefGoogle Scholar
  26. Stankov SM, Jakowski N, Heise S, Muhtarov P, Kutiev I, Warnant R (2003) A new method for reconstruction of the vertical electron density distribution in the upper ionosphere and plasmasphere. J Geophys Res 108:1164CrossRefGoogle Scholar
  27. Themens DR, Jayachandran PT, Galkin I, Hall C (2017) The Empirical Canadian HIgh Arctic Ionosphere Model (E-CHAIM): NmF2 and hmF2. J Geophys Res Space Phys 122:9015–9031CrossRefGoogle Scholar
  28. Themens DR, Jayachandran PT, Bilitza D, Erickson PJ, Häggström I, Lyashenko MV, Reid B, Varney RH, Pustovalova L (2018) Topside electron density representations for middle and high latitudes: a topside parameterization for E-CHAIM based on the NeQuick. J Geophys Res Space Phys 123:1603–1617CrossRefGoogle Scholar
  29. Venkatesh K, Rama Rao PVS, Saranya PL, Prasad DSVVD, Niranjan K (2011) Vertical electron density and topside effective scale height (HT) variations over the Indian equatorial and low latitude stations. Ann Geophys 29:1861–1872CrossRefGoogle Scholar
  30. Wu MJ, Guo P, Fu NF, Xu TL, Xu XS, Jin HL, Hu XG (2016) Topside correction of IRI by global modeling of ionospheric scale height using COSMIC radio occultation data. J Geophys Res Space Phys 121:5675–5692CrossRefGoogle Scholar
  31. Zhao B, Wan W, Yue X, Liu L, Ren Z, He M, Liu J (2011) Global characteristics of occurrence of an additional layer in the ionosphere observed by COSMIC/FORMOSAT-3. Geophys Res Lett 38:L02101Google Scholar
  32. Zhu J, Zhao B, Wan W, Ning B, Zhang S (2015) A new topside profiler based on Alouette/ISIS topside sounding. Adv Space Res 56:2080–2090CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Fabricio dos Santos Prol
    • 1
    • 2
    Email author
  • David R. Themens
    • 3
  • Manuel Hernández-Pajares
    • 2
  • Paulo de Oliveira Camargo
    • 1
  • Marcio Tadeu de Assis Honorato Muella
    • 4
  1. 1.Department of CartographyUniversidade Estadual Paulista (UNESP)Presidente PrudenteBrazil
  2. 2.Department of MathematicsUniversitat Politècnica de Catalunya—IOnospheric Determination and Navigation Based on Satellite and Terrestrial Systems (UPC-IonSAT)BarcelonaSpain
  3. 3.Department of PhysicsUniversity of New BrunswickFrederictonCanada
  4. 4.Laboratório de Física e Astronomia, IP&DUniversidade do Vale do ParaíbaSão José dos CamposBrazil

Personalised recommendations