Advertisement

Imaging Spectroscopy of Forest Ecosystems: Perspectives for the Use of Space-borne Hyperspectral Earth Observation Systems

  • Joachim HillEmail author
  • Henning Buddenbaum
  • Philip A. Townsend
Article

Abstract

The emerging challenges in preserving and managing forest ecosystems are multiscale in terms of space and time, and therefore require spatially and temporally contiguous information sources. Imaging spectroscopy has the potential to contribute information that cannot be raised by other Earth Observation Systems. In particular, the spectral capacity to monitor the distributions of chemical traits, such as canopy foliar nitrogen distribution, and to track changes in water content or the percentage water in plants, has already opened novel pathways toward assessing the global variability of ecosystem functions and services. However, there is an ongoing debate on how to best extract this type of information from the spectral measurements. Empirical approaches have demonstrated their efficiency in a multitude of local studies, but are criticized with respect to poor generalization capacities. Alternative strategies, such as the use of physically based models of leaf or canopy reflectance, or hybrid approaches, have the potential advantage to be more widely applicable. This paper attempts to assess achievements and shortcomings of these strategies and finds that the often-cited disadvantages of using empirical approaches are becoming less pronounced in the light of recent research results. While retrievals based on physically based models on leaf/needle level are close to laboratory quality, results on canopy level available to date still have considerable deficits. Owing to improved instrumental designs, better data calibration, new approaches for compensating canopy effects, and the use of increasingly efficient methods for establishing data-driven models, the scope of empirical approaches has considerably widened and they have been successfully applied to large areas. The future availability of regularly acquired hyperspectral imagery from Earth orbits will substantially contribute to their generalizability.

Keywords

Imaging spectroscopy Forest ecosystems Biochemical traits Retrieval strategies 

Notes

Acknowledgements

The study was supported within the framework of the EnMAP project (Contract No. 50 EE 1530) by the German Aerospace Center (DLR) and the Federal Ministry of Economic Affairs and Energy, and the CalTech Jet Propulsion Laboratory (Contracts 1579654 and 1590148). The authors thank Willy Werner, Dorothee Krieger, Bernhard Backes, Martin Schlerf, Johannes Stoffels, Sandra Dotzler, Barbara Paschmionka, Marion Lusseau, Max Gerhards, and many others who helped gather the data presented here. We also thank the two anonymous reviewers for highly constructive comments that helped improve the manuscript.

References

  1. Abdullah H, Darvishzadeh R, Skidmore AK, Groen TA, Heurich M (2018) European spruce bark beetle (Ips typographus, L.) green attack affects foliar reflectance and biochemical properties. Int J Appl Earth Obs Geoinf 64:199–209.  https://doi.org/10.1016/j.jag.2017.09.009 CrossRefGoogle Scholar
  2. Adams HD et al (2017) A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat Ecol Evol 1:1285–1291.  https://doi.org/10.1038/s41559-017-0248-x CrossRefGoogle Scholar
  3. Albaugh TJ, Allen HL, Zutter BR, Quicke HE (2003) Vegetation control and fertilization in midrotation Pinus taeda stands in the southeastern United States. Ann For Sci 60:619–624.  https://doi.org/10.1051/forest:2003054 CrossRefGoogle Scholar
  4. Allen HL, Fox TR, Campbell RG (2005) What is ahead for intensive pine plantation silviculture in the south? South J Appl For 29:62–69.  https://doi.org/10.1093/sjaf/29.2.62 CrossRefGoogle Scholar
  5. Anderegg LDL, Anderegg WRL, Berry JA (2013a) Not all droughts are created equal: translating meteorological drought into woody plant mortality. Tree Physiol 33:672–683.  https://doi.org/10.1093/treephys/tpt044 CrossRefGoogle Scholar
  6. Anderegg WRL, Kane JM, Anderegg LDL (2013b) Consequences of widespread tree mortality triggered by drought and temperature stress. Nat Clim Change 3:30–36.  https://doi.org/10.1038/nclimate1635 CrossRefGoogle Scholar
  7. Asner GP (1998) Biophysical and biochemical sources of variability in canopy reflectance. Remote Sens Environ 64:234–253.  https://doi.org/10.1016/S0034-4257(98)00014-5 CrossRefGoogle Scholar
  8. Asner GP, Martin RE (2009) Airborne spectranomics: mapping canopy chemical and taxonomic diversity in tropical forests. Front Ecol Environ 7:269–276.  https://doi.org/10.1890/070152 CrossRefGoogle Scholar
  9. Asner GP, Martin RE (2016) Convergent elevation trends in canopy chemical traits of tropical forests. Glob Change Biol 22:2216–2227.  https://doi.org/10.1111/gcb.13164 CrossRefGoogle Scholar
  10. Asner GP, Nepstad D, Cardinot G, Ray D (2004) Drought stress and carbon uptake in an Amazon forest measured with spaceborne imaging spectroscopy. Proc Natl Acad Sci USA 101:6039–6044.  https://doi.org/10.1073/pnas.0400168101 CrossRefGoogle Scholar
  11. Asner GP et al (2011) Spectroscopy of canopy chemicals in humid tropical forests. Remote Sens Environ 115:3587–3598.  https://doi.org/10.1016/j.rse.2011.08.020 CrossRefGoogle Scholar
  12. Asner GP et al (2012) Carnegie Airborne Observatory-2: increasing science data dimensionality via high-fidelity multi-sensor fusion. Remote Sens Environ 124:454–465.  https://doi.org/10.1016/j.rse.2012.06.012 CrossRefGoogle Scholar
  13. Asner GP, Martin RE, Anderson CB, Knapp DE (2015) Quantifying forest canopy traits: imaging spectroscopy versus field survey. Remote Sens Environ 158:15–27.  https://doi.org/10.1016/j.rse.2014.11.011 CrossRefGoogle Scholar
  14. Asner GP, Brodrick PG, Anderson CB, Vaughn N, Knapp DE, Martin RE (2016) Progressive forest canopy water loss during the 2012–2015 California drought. Proc Natl Acad Sci 113:E249–E255.  https://doi.org/10.1073/pnas.1523397113 CrossRefGoogle Scholar
  15. Asner GP et al (2017) Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. Science 355:385.  https://doi.org/10.1126/science.aaj1987 CrossRefGoogle Scholar
  16. Atzberger C (2000) Development of an invertible forest reflectance model: the INFOR-model. In: Buchroithner M (ed) A decade of trans-European remote sensing cooperation. Proceedings of the 20th EARSeL symposium, Dresden, Germany, 14–16 June 2000, pp 39–44Google Scholar
  17. Atzberger C, Guérif M, Baret F, Werner W (2010) Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat. Comput Electron Agric 73:165–173.  https://doi.org/10.1016/j.compag.2010.05.006 CrossRefGoogle Scholar
  18. Barton CVM, North PRJ (2001) Remote sensing of canopy light use efficiency using the photochemical reflectance index: model and sensitivity analysis. Remote Sens Environ 78:264–273.  https://doi.org/10.1016/S0034-4257(01)00224-3 CrossRefGoogle Scholar
  19. Beamish AL, Coops NC, Hermosilla T, Chabrillat S, Heim B (2018) Monitoring pigment-driven vegetation changes in a low-Arctic tundra ecosystem using digital cameras. Ecosphere 9:e02123.  https://doi.org/10.1002/ecs2.2123 CrossRefGoogle Scholar
  20. Beniston M (2004) The 2003 heat wave in Europe: a shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophys Res Lett.  https://doi.org/10.1029/2003GL018857 CrossRefGoogle Scholar
  21. Berger K, Atzberger C, Danner M, D’Urso G, Mauser W, Vuolo F, Hank T (2018) Evaluation of the PROSAIL model capabilities for future hyperspectral model environments: a review study. Remote Sens 10:85.  https://doi.org/10.3390/rs10010085 CrossRefGoogle Scholar
  22. Bicheron P, Leroy M (1999) A method of biophysical parameter retrieval at global scale by inversion of a vegetation reflectance model. Remote Sens Environ 67:251–266.  https://doi.org/10.1016/S0034-4257(98)00083-2 CrossRefGoogle Scholar
  23. Birdsey R, Pan Y (2011) Ecology: drought and dead trees. Nat Clim Change 1:444–445.  https://doi.org/10.1038/nclimate1298 CrossRefGoogle Scholar
  24. Bond I, Chambwera M, Jones B, Nhantumbo I, Chundama M (2010) REDD+ in dryland forests: issues and prospects for pro-poor REDD in the miombo woodlands of southern Africa, natural resource issues, vol 21. International Institute for Environment and Development, LondonGoogle Scholar
  25. Bréda NJJ (2003) Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. J Exp Bot 54:2403–2417.  https://doi.org/10.1093/jxb/erg263 CrossRefGoogle Scholar
  26. Buddenbaum H, Steffens M (2012) The effects of spectral pretreatments on chemometric analyses of soil profiles using laboratory imaging spectroscopy. Appl Environ Soil Sci 2012:12.  https://doi.org/10.1155/2012/274903 CrossRefGoogle Scholar
  27. Buddenbaum H, Pueschel P, Stellmes M, Werner W, Hill J (2011) Measuring water and chlorophyll content on the leaf and canopy scale. EARSeL eProc 10:66–72Google Scholar
  28. Buddenbaum H, Stern O, Stellmes M, Stoffels J, Pueschel P, Hill J, Werner W (2012) Field imaging spectroscopy of beech seedlings under dryness stress. Remote Sens 4:3721–3740.  https://doi.org/10.3390/rs4123721 CrossRefGoogle Scholar
  29. Buddenbaum H et al (2015) Using VNIR and SWIR field imaging spectroscopy for drought stress monitoring of beech seedlings. Int J Remote Sens 36:4590–4605.  https://doi.org/10.1080/01431161.2015.1084435 CrossRefGoogle Scholar
  30. Carrere V et al (2013) HYPXIM: a second generation high spatial resolution hyperspectral satellite for dual applications. In: 5th Workshop on hyperspectral image and signal processing: evolution in remote sensing (WHISPERS), 26–28 June 2013, pp 1–4.  https://doi.org/10.1109/whispers.2013.8080685
  31. Chadwick K, Asner G (2016) Organismic-scale remote sensing of canopy foliar traits in lowland tropical forests. Remote Sens 8:87.  https://doi.org/10.3390/rs8020087 CrossRefGoogle Scholar
  32. Chávez R, Clevers J, Herold M, Acevedo E, Ortiz M (2013) Assessing water stress of desert tamarugo trees using in situ data and very high spatial resolution remote sensing. Remote Sens 5:5064.  https://doi.org/10.3390/rs5105064 CrossRefGoogle Scholar
  33. Cheng T, Rivard B, Sánchez-Azofeifa A (2011) Spectroscopic determination of leaf water content using continuous wavelet analysis. Remote Sens Environ 115:659–670.  https://doi.org/10.1016/j.rse.2010.11.001 CrossRefGoogle Scholar
  34. Cheng T, Rivard B, Sánchez-Azofeifa AG, Féret J-B, Jacquemoud S, Ustin SL (2014) Deriving leaf mass per area (LMA) from foliar reflectance across a variety of plant species using continuous wavelet analysis. ISPRS J Photogramm Remote Sens 87:28–38.  https://doi.org/10.1016/j.isprsjprs.2013.10.009 CrossRefGoogle Scholar
  35. Ciais P et al (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533.  https://doi.org/10.1038/nature03972 CrossRefGoogle Scholar
  36. Colombo R, Meroni M, Marchesi A, Busetto L, Rossini M, Giardino C, Panigada C (2008) Estimation of leaf and canopy water content in poplar plantations by means of hyperspectral indices and inverse modeling. Remote Sens Environ 112:1820–1834.  https://doi.org/10.1016/j.rse.2007.09.005 CrossRefGoogle Scholar
  37. Combal B et al (2002) Retrieval of canopy biophysical variables from bidirectional reflectance using prior information to solve the ill-posed inverse problem. Remote Sens Environ 84:1–15.  https://doi.org/10.1016/S0034-4257(02)00035-4 CrossRefGoogle Scholar
  38. Coops NC, Smith M-L, Martin ME, Ollinger SV (2003) Prediction of eucalypt foliage nitrogen content from satellite-derived hyperspectral data. IEEE Trans Geosci Remote Sens 41:1338–1346.  https://doi.org/10.1109/TGRS.2003.813135 CrossRefGoogle Scholar
  39. Curran PJ (1989) Remote sensing of foliar chemistry. Remote Sens Environ 30:271–278.  https://doi.org/10.1016/0034-4257(89)90069-2 CrossRefGoogle Scholar
  40. Dawson TP, Curran PJ, Plummer SE (1998) LIBERTY—modeling the effects of leaf biochemical concentration on reflectance spectra. Remote Sens Environ 65:50–60.  https://doi.org/10.1016/S0034-4257(98)00007-8 CrossRefGoogle Scholar
  41. Dechant B, Cuntz M, Vohland M, Schulz E, Doktor D (2017) Estimation of photosynthesis traits from leaf reflectance spectra: correlation to nitrogen content as the dominant mechanism. Remote Sens Environ 196:279–292.  https://doi.org/10.1016/j.rse.2017.05.019 CrossRefGoogle Scholar
  42. Dotzler S, Hill J, Buddenbaum H, Stoffels J (2015) The potential of EnMAP and Sentinel-2 data for detecting drought stress phenomena in deciduous forest communities. Remote Sens 7:14227–14258.  https://doi.org/10.3390/rs71014227 CrossRefGoogle Scholar
  43. Drusch M et al (2017) The FLuorescence EXplorer Mission Concep—ESA’s Earth Explorer 8. IEEE Trans Geosci Remote Sens 55:1273–1284.  https://doi.org/10.1109/tgrs.2016.2621820 CrossRefGoogle Scholar
  44. Eckardt A, Horack J, Lehmann F, Krutz D, Drescher J, Whorton M, Soutullo M (2015) DESIS (DLR earth sensing imaging spectrometer for the ISS-MUSES platform). In: IEEE international geoscience and remote sensing symposium (IGARSS), 26–31 July 2015, pp 1457–1459.  https://doi.org/10.1109/igarss.2015.7326053
  45. EEA (2012) Annual environmental indicator report 2012—ecosystem resilience and resource efficiency in a green economy in Europe. European Environment Agency, Copenhagen.  https://doi.org/10.2800/487 CrossRefGoogle Scholar
  46. Ewald M et al (2018) LiDAR derived forest structure data improves predictions of canopy N and P concentrations from imaging spectroscopy. Remote Sens Environ 211:13–25.  https://doi.org/10.1016/j.rse.2018.03.038 CrossRefGoogle Scholar
  47. Fang M, Ju W, Zhan W, Cheng T, Qiu F, Wang J (2017) A new spectral similarity water index for the estimation of leaf water content from hyperspectral data of leaves. Remote Sens Environ 196:13–27.  https://doi.org/10.1016/j.rse.2017.04.029 CrossRefGoogle Scholar
  48. FAO (2010) Guidelines on sustainable forest management in drylands of sub-Saharan Africa. FAO, RomeGoogle Scholar
  49. Fassnacht F et al (2014) Comparison of feature reduction algorithms for classifying tree species with hyperspectral data on three central European test sites. IEEE J Sel Top Appl Earth Obs Remote Sens 7:2547–2561.  https://doi.org/10.1109/jstars.2014.2329390 CrossRefGoogle Scholar
  50. Fassnacht FE, Stenzel S, Gitelson AA (2015) Non-destructive estimation of foliar carotenoid content of tree species using merged vegetation indices. J Plant Physiol 176:210–217.  https://doi.org/10.1016/j.jplph.2014.11.003 CrossRefGoogle Scholar
  51. Fassnacht FE et al (2016) Review of studies on tree species classification from remotely sensed data. Remote Sens Environ 186:64–87.  https://doi.org/10.1016/j.rse.2016.08.013 CrossRefGoogle Scholar
  52. Fawcett D, Verhoef W, Schläpfer D, Schneider FD, Schaepman ME, Damm A (2018) Advancing retrievals of surface reflectance and vegetation indices over forest ecosystems by combining imaging spectroscopy, digital object models, and 3D canopy modelling. Remote Sens Environ 204:583–595.  https://doi.org/10.1016/j.rse.2017.09.040 CrossRefGoogle Scholar
  53. Feilhauer H, Asner GP, Martin RE (2015) Multi-method ensemble selection of spectral bands related to leaf biochemistry. Remote Sens Environ 164:57–65.  https://doi.org/10.1016/j.rse.2015.03.033 CrossRefGoogle Scholar
  54. Feingersh T, Ben Dor E (2015) SHALOM—a commercial hyperspectral space mission. In: Qian S-E (ed) Optical payloads for space missions. Wiley, Chichester.  https://doi.org/10.1002/9781118945179.ch11 CrossRefGoogle Scholar
  55. Feret J-B et al (2008) PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens Environ 112:3030–3043.  https://doi.org/10.1016/j.rse.2008.02.012 CrossRefGoogle Scholar
  56. Féret J-B et al (2011) Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling. Remote Sens Environ 115:2742–2750.  https://doi.org/10.1016/j.rse.2011.06.016 CrossRefGoogle Scholar
  57. Féret JB, Gitelson AA, Noble SD, Jacquemoud S (2017) PROSPECT-D: towards modeling leaf optical properties through a complete lifecycle. Remote Sens Environ 193:204–215.  https://doi.org/10.1016/j.rse.2017.03.004 CrossRefGoogle Scholar
  58. Fink AH, Brücher T, Krüger A, Leckebusch GC, Pinto JG, Ulbrich U (2004) The 2003 European summer heatwaves and drought—synoptic diagnosis and impacts. Weather 59:209–216.  https://doi.org/10.1256/wea.73.04 CrossRefGoogle Scholar
  59. Foster JR, Townsend PA (2004) Linking hyperspectral imagery and forest inventories for forest assessment in the Central Appalachians. In: Yaussy DA, Hix DM, Long RP, Goebel PC (eds) 14th Central hardwood forest conference. U.S. Department of Agriculture, Forest Service, Northeastern Research Station, pp 76–86Google Scholar
  60. Franklin SE (2001) Remote sensing for sustainable forest management. Lewis Publishers, Boca RatonCrossRefGoogle Scholar
  61. Frantz D, Röder A, Stellmes M, Hill J (2016) An operational radiometric landsat preprocessing framework for large-area time series applications. IEEE Trans Geosci Remote Sens.  https://doi.org/10.1109/tgrs.2016.2530856 CrossRefGoogle Scholar
  62. Gamon JA, Peñuelas J, Field CB (1992) A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens Environ 41:35–44.  https://doi.org/10.1016/0034-4257(92)90059-s CrossRefGoogle Scholar
  63. Gara TW, Skidmore AK, Darvishzadeh R, Wang T (2018) Leaf to canopy upscaling approach affects the estimation of canopy traits. GISci Remote Sens.  https://doi.org/10.1080/15481603.2018.1540170 CrossRefGoogle Scholar
  64. Garbulsky MF, Peñuelas J, Gamon J, Inoue Y, Filella I (2011) The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: a review and meta-analysis. Remote Sens Environ 115:281–297.  https://doi.org/10.1016/j.rse.2010.08.023 CrossRefGoogle Scholar
  65. Gastellu-Etchegorry JP, Martin E, Gascon F (2004) DART: a 3D model for simulating satellite images and studying surface radiation budget. Int J Remote Sens 25:73–96.  https://doi.org/10.1080/0143116031000115166 CrossRefGoogle Scholar
  66. Ghamisi P, Plaza J, Chen Y, Li J, Plaza AJ (2017) Advanced spectral classifiers for hyperspectral images: a review. IEEE Geosci Remote Sens Mag 5:8–32.  https://doi.org/10.1109/mgrs.2016.2616418 CrossRefGoogle Scholar
  67. Gitelson AA, Merzlyak MN (1997) Remote estimation of chlorophyll content in higher plant leaves. Int J Remote Sens 18:2691–2697.  https://doi.org/10.1080/014311697217558 CrossRefGoogle Scholar
  68. Gitelson AA, Gritz Y, Merzlyak MN (2003) Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J Plant Physiol 160:271–282.  https://doi.org/10.1078/0176-1617-00887 CrossRefGoogle Scholar
  69. Gitelson AA, Keydan GP, Merzlyak MN (2006) Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys Res Lett.  https://doi.org/10.1029/2006gl026457 CrossRefGoogle Scholar
  70. Green AA, Berman M, Switzer P, Craig MD (1998) A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans Geosci Remote Sens 26:65–74CrossRefGoogle Scholar
  71. Green RO, Painter TH, Roberts DA, Dozier J (2006) Measuring the expressed abundance of the three phases of water with an imaging spectrometer over melting snow. Water Resour Res.  https://doi.org/10.1029/2005wr004509 CrossRefGoogle Scholar
  72. Guanter L et al (2015) The EnMAP spaceborne imaging spectroscopy mission for earth observation. Remote Sens 7:8830–8857.  https://doi.org/10.3390/rs70708830 CrossRefGoogle Scholar
  73. Hank TB, Berger K, Bach H, Clevers JGPW, Gitelson A, Zarco-Tejada P, Mauser W (2019) Spaceborne imaging spectroscopy for sustainable agriculture: contributions and challenges. Surv Geophys.  https://doi.org/10.1007/s10712-018-9492-0 CrossRefGoogle Scholar
  74. Hansen MC, Roy DP, Lindquist E, Adusei B, Justice CO, Altstatt A (2008) A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin. Remote Sens Environ 112:2495–2513.  https://doi.org/10.1016/j.rse.2007.11.012 CrossRefGoogle Scholar
  75. Heim R, Jürgens N, Große-Stoltenberg A, Oldeland J (2015) The effect of epidermal structures on leaf spectral signatures of ice plants (Aizoaceae). Remote Sens 7:15862CrossRefGoogle Scholar
  76. Held M, Rabe A, Senf C, Svd Linden, Hostert P (2015) Analyzing hyperspectral and hypertemporal data by decoupling feature redundancy and feature relevance. IEEE Geosci Remote Sens Lett 12:983–987.  https://doi.org/10.1109/lgrs.2014.2371242 CrossRefGoogle Scholar
  77. Hernández-Clemente R, Navarro-Cerrillo RM, Zarco-Tejada PJ (2012) Carotenoid content estimation in a heterogeneous conifer forest using narrow-band indices and PROSPECT + DART simulations. Remote Sens Environ 127:298–315.  https://doi.org/10.1016/j.rse.2012.09.014 CrossRefGoogle Scholar
  78. Homolová L, Malenovský Z, Clevers JGPW, García-Santos G, Schaepman ME (2013) Review of optical-based remote sensing for plant trait mapping. Ecol Complex 15:1–16.  https://doi.org/10.1016/j.ecocom.2013.06.003 CrossRefGoogle Scholar
  79. Hosgood B, Jacquemoud S, Andreoli G, Verdebout J, Pedrini G, Schmuck G (1994) Leaf optical properties experiment 93 (LOPEX93). European Commission, Joint Research Center, IspraGoogle Scholar
  80. Hovi A, Raitio P, Rautiainen M (2017) A spectral analysis of 25 boreal tree species. Silva Fenn.  https://doi.org/10.14214/sf.7753 CrossRefGoogle Scholar
  81. Huang Z, Turner BJ, Dury SJ, Wallis IR, Foley WJ (2004) Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis. Remote Sens Environ 93:18–29.  https://doi.org/10.1016/j.rse.2004.06.008 CrossRefGoogle Scholar
  82. Huber S, Kneubühler M, Psomas A, Itten K, Zimmermann NE (2008) Estimating foliar biochemistry from hyperspectral data in mixed forest canopy. For Ecol Manag 256:491–501.  https://doi.org/10.1016/j.foreco.2008.05.011 CrossRefGoogle Scholar
  83. Huemmrich KF (2001) The GeoSail model: a simple addition to the SAIL model to describe discontinuous canopy reflectance. Remote Sens Environ 75:423–431.  https://doi.org/10.1016/S0034-4257(00)00184-X CrossRefGoogle Scholar
  84. Hultquist C, Chen G, Zhao K (2014) A comparison of Gaussian process regression, random forests and support vector regression for burn severity assessment in diseased forests. Remote Sens Lett 5:723–732.  https://doi.org/10.1080/2150704x.2014.963733 CrossRefGoogle Scholar
  85. Jacquemoud S, Baret F (1990) PROSPECT: a model of leaf optical properties spectra. Remote Sens Environ 34:75–91.  https://doi.org/10.1016/0034-4257(90)90100-Z CrossRefGoogle Scholar
  86. Jacquemoud S, Ustin SL, Verdebout J, Schmuck G, Andreoli G, Hosgood B (1996) Estimating leaf biochemistry using the PROSPECT leaf optical properties model. Remote Sens Environ 56:194–202.  https://doi.org/10.1016/0034-4257(95)00238-3 CrossRefGoogle Scholar
  87. Jacquemoud S, Bacour C, Poilvé H, Frangi J-P (2000) Comparison of four radiative transfer models to simulate plant canopies reflectance: direct and inverse mode. Remote Sens Environ 74:471–481.  https://doi.org/10.1016/S0034-4257(00)00139-5 CrossRefGoogle Scholar
  88. Jacquemoud S et al (2009) PROSPECT + SAIL models: a review of use for vegetation characterization. Remote Sens Environ 113:S56–S66.  https://doi.org/10.1016/j.rse.2008.01.026 CrossRefGoogle Scholar
  89. Jay S, Bendoula R, Hadoux X, Féret J-B, Gorretta N (2016) A physically-based model for retrieving foliar biochemistry and leaf orientation using close-range imaging spectroscopy. Remote Sens Environ 177:220–236.  https://doi.org/10.1016/j.rse.2016.02.029 CrossRefGoogle Scholar
  90. Knyazikhin Y et al (2013) Hyperspectral remote sensing of foliar nitrogen content. Proc Natl Acad Sci 110:E185–E192.  https://doi.org/10.1073/pnas.1210196109 CrossRefGoogle Scholar
  91. Koetz B, Schaepman M, Morsdorf F, Bowyer P, Itten K, Allgöwer B (2004) Radiative transfer modeling within a heterogeneous canopy for estimation of forest fire fuel properties. Remote Sens Environ 92:332–344.  https://doi.org/10.1016/j.rse.2004.05.015 CrossRefGoogle Scholar
  92. Koetz B, Sun G, Morsdorf F, Ranson KJ, Kneubühler M, Itten K, Allgöwer B (2007) Fusion of imaging spectrometer and LIDAR data over combined radiative transfer models for forest canopy characterization. Remote Sens Environ 106:449–459.  https://doi.org/10.1016/j.rse.2006.09.013 CrossRefGoogle Scholar
  93. Kokaly RF, Asner GP, Ollinger SV, Martin ME, Wessman CA (2009) Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sens Environ 113(Supplement 1):S78–S91.  https://doi.org/10.1016/j.rse.2008.10.018 CrossRefGoogle Scholar
  94. Kuusk A, Kuusk J, Lang M (2014) Modeling directional forest reflectance with the hybrid type forest reflectance model FRT. Remote Sens Environ 149:196–204.  https://doi.org/10.1016/j.rse.2014.03.035 CrossRefGoogle Scholar
  95. Labate D et al (2009) The PRISMA payload optomechanical design, a high performance instrument for a new hyperspectral mission. Acta Astronaut 65:1429–1436.  https://doi.org/10.1016/j.actaastro.2009.03.077 CrossRefGoogle Scholar
  96. Lausch A, Erasmi S, King D, Magdon P, Heurich M (2016) Understanding forest health with remote sensing-part I—a review of spectral traits, processes and remote-sensing characteristics. Remote Sens 8:1029.  https://doi.org/10.3390/rs8121029 CrossRefGoogle Scholar
  97. Lausch A, Erasmi S, King D, Magdon P, Heurich M (2017) Understanding forest health with remote sensing-part II—a review of approaches and data models. Remote Sens 9:129.  https://doi.org/10.3390/rs9020129 CrossRefGoogle Scholar
  98. Lausch A et al (2018) Understanding forest health with remote sensing, part III: requirements for a scalable multi-source forest health monitoring network based on data science approaches. Remote Sens 10:1120.  https://doi.org/10.3390/rs10071120 CrossRefGoogle Scholar
  99. le Maire G, François C, Dufrêne E (2004) Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sens Environ 89:1–28.  https://doi.org/10.1016/j.rse.2003.09.004 CrossRefGoogle Scholar
  100. le Maire G et al (2008) Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass. Remote Sens Environ 112:3846–3864.  https://doi.org/10.1016/j.rse.2008.06.005 CrossRefGoogle Scholar
  101. Lee CM, Cable ML, Hook SJ, Green RO, Ustin SL, Mandl DJ, Middleton EM (2015) An introduction to the NASA Hyperspectral InfraRed Imager (HyspIRI) mission and preparatory activities. Remote Sens Environ 167:6–19.  https://doi.org/10.1016/j.rse.2015.06.012 CrossRefGoogle Scholar
  102. Li P, Wang Q (2011) Retrieval of leaf biochemical parameters using PROSPECT inversion: a new approach for alleviating ill-posed problems. IEEE Trans Geosci Remote Sens 49:2499–2506.  https://doi.org/10.1109/tgrs.2011.2109390 CrossRefGoogle Scholar
  103. Li D et al (2018) PROCWT: coupling PROSPECT with continuous wavelet transform to improve the retrieval of foliar chemistry from leaf bidirectional reflectance spectra. Remote Sens Environ 206:1–14.  https://doi.org/10.1016/j.rse.2017.12.013 CrossRefGoogle Scholar
  104. Liechty HO, Fristoe C (2013) Response of midrotation pine stands to fertilizer and herbicide application in the western Gulf coastal plain. South J Appl For 37:69–74CrossRefGoogle Scholar
  105. Lillesaeter O (1982) Spectral reflectance of partly transmitting leaves: laboratory measurements and mathematical modeling. Remote Sens Environ 12:247–254.  https://doi.org/10.1016/0034-4257(82)90057-8 CrossRefGoogle Scholar
  106. Lindner M et al (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709.  https://doi.org/10.1016/j.foreco.2009.09.023 CrossRefGoogle Scholar
  107. Locherer M, Hank T, Danner M, Mauser W (2015) Retrieval of seasonal leaf area index from simulated EnMAP data through optimized LUT-based inversion of the PROSAIL model. Remote Sens 7:10321CrossRefGoogle Scholar
  108. Ma Z et al (2012) Regional drought-induced reduction in the biomass carbon sink of Canada’s boreal forests. Proc Natl Acad Sci 109:2423–2427.  https://doi.org/10.1073/pnas.1111576109 CrossRefGoogle Scholar
  109. Malenovský Z et al (in review) Variability and uncertainty challenges in upscaling imaging spectroscopy observations from leaves to vegetation canopies. Surv GeophysGoogle Scholar
  110. Malenovský Z, Albrechtová J, Lhotáková Z, Zurita-Milla R, Clevers JGPW, Schaepman ME, Cudlín P (2006a) Applicability of the PROSPECT model for Norway spruce needles. Int J Remote Sens 27:5315–5340.  https://doi.org/10.1080/01431160600762990 CrossRefGoogle Scholar
  111. Malenovský Z, Ufer C, Lhotáková Z, Clevers JGPW, Schaepman ME, Albrechtová J, Cudlín P (2006b) A new hyperspectral index for chlorophyll estimation of a forest canopy: area under curve normalised to maximal band depth between 650–725 nm. EARSeL eProc 5:161–172Google Scholar
  112. Martin ME, Plourde LC, Ollinger SV, Smith ML, McNeil BE (2008) A generalizable method for remote sensing of canopy nitrogen across a wide range of forest ecosystems. Remote Sens Environ 112:3511–3519.  https://doi.org/10.1016/j.rse.2008.04.008 CrossRefGoogle Scholar
  113. Martin R, Chadwick K, Brodrick P, Carranza-Jimenez L, Vaughn N, Asner G (2018a) An approach for foliar trait retrieval from airborne imaging spectroscopy of tropical forests. Remote Sens 10:199.  https://doi.org/10.3390/rs10020199 CrossRefGoogle Scholar
  114. Martin RE et al (2018b) Remote measurement of canopy water content in giant sequoias (Sequoiadendron giganteum) during drought. For Ecol Manag 419–420:279–290.  https://doi.org/10.1016/j.foreco.2017.12.002 CrossRefGoogle Scholar
  115. Masek JG et al (2006) A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geosci Remote Sens Lett 3:68–72.  https://doi.org/10.1109/lgrs.2005.857030 CrossRefGoogle Scholar
  116. Matsunaga T et al (2017) Current status of Hyperspectral Imager Suite (HISUI) onboard International Space Station (ISS). In: IEEE international geoscience and remote sensing symposium (IGARSS), 23–28 July 2017, pp 443–446.  https://doi.org/10.1109/igarss.2017.8126989
  117. McNeil BE, de Beurs KM, Eshleman KN, Foster JR, Townsend PA (2007a) Maintenance of ecosystem nitrogen limitation by ephemeral forest disturbance: an assessment using MODIS, Hyperion, and Landsat ETM+. Geophys Res Lett.  https://doi.org/10.1029/2007gl031387 CrossRefGoogle Scholar
  118. McNeil BE, Read JM, Driscoll CT (2007b) Foliar nitrogen responses to elevated atmospheric nitrogen deposition in nine temperate forest canopy species. Environ Sci Technol 41:5191–5197.  https://doi.org/10.1021/es062901z CrossRefGoogle Scholar
  119. Miller J et al (2005) Development of a vegetation fluorescence canopy model—ESTEC contract no. 16365/02/NL/FF—final reportGoogle Scholar
  120. Nieke J, Rast M (2018) Towards the Copernicus Hyperspectral Imaging Mission for the Environment (CHIME). In: IGARSS 2018—IEEE international geoscience and remote sensing symposium, 22–27 July 2018, pp 157–159.  https://doi.org/10.1109/igarss.2018.8518384
  121. Nink S, Hill J, Buddenbaum H, Stoffels J, Sachtleber T, Langshausen J (2015) Assessing the suitability of future multi- and hyperspectral satellite systems for mapping the spatial distribution of Norway spruce timber volume. Remote Sens 7:12009–12040.  https://doi.org/10.3390/rs70912009 CrossRefGoogle Scholar
  122. North PRJ (1996) Three-dimensional forest light interaction model using a Monte Carlo method. IEEE Trans Geosci Remote Sens 34:946–956.  https://doi.org/10.1109/36.508411 CrossRefGoogle Scholar
  123. Ollinger SV et al (2008) Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: functional relations and potential climate feedbacks. Proc Natl Acad Sci 105:19336–19341.  https://doi.org/10.1073/pnas.0810021105 CrossRefGoogle Scholar
  124. Omari K, White HP, Staenz K (2009) Multiple scattering within the FLAIR model incorporating the photon recollision probability approach. IEEE Trans Geosci Remote Sens 47:2931–2941.  https://doi.org/10.1109/tgrs.2009.2014466 CrossRefGoogle Scholar
  125. Omari K, White HP, Staenz K, King DJ (2013) Retrieval of forest canopy parameters by inversion of the PROFLAIR leaf-canopy reflectance model using the LUT approach. IEEE J Sel Top Appl Earth Obs Remote Sens 6:715–723.  https://doi.org/10.1109/jstars.2013.2240264 CrossRefGoogle Scholar
  126. Paz-Kagan T et al (2018) Landscape-scale variation in canopy water content of giant sequoias during drought. For Ecol Manag 419–420:291–304.  https://doi.org/10.1016/j.foreco.2017.11.018 CrossRefGoogle Scholar
  127. Peng C et al (2011) A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nat Clim Change 1:467–471.  https://doi.org/10.1038/nclimate1293 CrossRefGoogle Scholar
  128. Peñuelas J, Baret F, Filella I (1995) Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 31:221–230Google Scholar
  129. Rascher U et al (2015) Sun-induced fluorescence—a new probe of photosynthesis: first maps from the imaging spectrometer HyPlant. Glob Change Biol 21:4673–4684.  https://doi.org/10.1111/gcb.13017 CrossRefGoogle Scholar
  130. Rennenberg H, Loreto F, Polle A, Brilli F, Fares S, Beniwal RS, Gessler A (2006) Physiological responses of forest trees to heat and drought. Plant Biol 8:556–571.  https://doi.org/10.1055/s-2006-924084 CrossRefGoogle Scholar
  131. Riaño D, Vaughan P, Chuvieco E, Zarco-Tejada PJ, Ustin SL (2005) Estimation of fuel moisture content by inversion of radiative transfer models to simulate equivalent water thickness and dry matter content: analysis at leaf and canopy level. IEEE Trans Geosci Remote Sens 43:819–826.  https://doi.org/10.1109/tgrs.2005.843316 CrossRefGoogle Scholar
  132. Roberts DA, Gardner M, Church R, Ustin S, Scheer G, Green RO (1998) Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models. Remote Sens Environ 65:267–279.  https://doi.org/10.1016/S0034-4257(98)00037-6 CrossRefGoogle Scholar
  133. Rogge DM, Rivard B, Jinkai Z, Jilu F (2006) Iterative spectral unmixing for optimizing per-pixel endmember sets. IEEE Trans Geosci Remote Sens 44:3725–3736.  https://doi.org/10.1109/tgrs.2006.881123 CrossRefGoogle Scholar
  134. Rogge D, Bachmann M, Rivard B, Nielsen AA, Feng J (2014) A spatial–spectral approach for deriving high signal quality eigenvectors for remote sensing image transformations. Int J Appl Earth Obs Geoinf 26:387–398.  https://doi.org/10.1016/j.jag.2013.09.007 CrossRefGoogle Scholar
  135. Schelhaas M-J, Nabuurs G-J, Schuck A (2003) Natural disturbances in the European forests in the 19th and 20th centuries. Glob Change Biol 9:1620–1633.  https://doi.org/10.1046/j.1365-2486.2003.00684.x CrossRefGoogle Scholar
  136. Schlerf M, Atzberger C (2006) Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data. Remote Sens Environ 100:281–294.  https://doi.org/10.1016/j.rse.2005.10.006 CrossRefGoogle Scholar
  137. Schlerf M, Atzberger C, Hill J, Buddenbaum H, Werner W, Schüler G (2010) Retrieval of chlorophyll and nitrogen in Norway spruce (Picea abies L. Karst.) using imaging spectroscopy. Int J Appl Earth Obs Geoinf 12:17–26.  https://doi.org/10.1016/j.jag.2009.08.006 CrossRefGoogle Scholar
  138. Seidl R, Schelhaas M-J, Lexer MJ (2011) Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob Change Biol 17:2842–2852.  https://doi.org/10.1111/j.1365-2486.2011.02452.x CrossRefGoogle Scholar
  139. Serbin SP, Singh A, McNeil BE, Kingdon CC, Townsend PA (2014) Spectroscopic determination of leaf morphological and biochemical traits for northern temperate and boreal tree species. Ecol Appl 24:1651–1669.  https://doi.org/10.1890/13-2110.1 CrossRefGoogle Scholar
  140. Singh A, Serbin SP, McNeil BE, Kingdon CC, Townsend PA (2015) Imaging spectroscopy algorithms for mapping canopy foliar chemical and morphological traits and their uncertainties. Ecol Appl 25:2180–2197.  https://doi.org/10.1890/14-2098.1 CrossRefGoogle Scholar
  141. Smith M-L, Martin ME, Plourde L, Ollinger SV (2003) Analysis of hyperspectral data for estimation of temperate forest canopy nitrogen concentration: comparison between an airborne (AVIRIS) and a spaceborne (Hyperion) sensor. IEEE Trans Geosci Remote Sens 41:1332–1337.  https://doi.org/10.1109/tgrs.2003.813128 CrossRefGoogle Scholar
  142. Somers B, Asner GP (2013) Multi-temporal hyperspectral mixture analysis and feature selection for invasive species mapping in rainforests. Remote Sens Environ 136:14–27.  https://doi.org/10.1016/j.rse.2013.04.006 CrossRefGoogle Scholar
  143. Sommer C, Holzwarth S, Heiden U, Heurich M, Müller J, Mauser W (2016) Feature-based tree species classification using hyperspectral and lidar data in the Bavarian Forest National Park. EARSeL eProc 14:49–70.  https://doi.org/10.12760/02-2015-2-05 CrossRefGoogle Scholar
  144. Sonobe R, Wang Q (2018) Nondestructive assessments of carotenoids content of broadleaved plant species using hyperspectral indices. Comput Electron Agric 145:18–26.  https://doi.org/10.1016/j.compag.2017.12.022 CrossRefGoogle Scholar
  145. Stoffels J et al (2015) Satellite-based derivation of high-resolution forest information layers for operational forest management. Forests 6:1982–2013.  https://doi.org/10.3390/f6061982 CrossRefGoogle Scholar
  146. Storch T, Habermeyer M, Eberle S, Muhle H, Mueller RM (2013) Towards a critical design of an operational ground segment for an Earth observation mission. J Appl Remote Sens 7:075381.  https://doi.org/10.1117/1.JRS.7.073581 CrossRefGoogle Scholar
  147. Suárez L, Zarco-Tejada PJ, Sepulcre-Cantó G, Pérez-Priego O, Miller JR, Jiménez-Muñoz JC, Sobrino J (2008) Assessing canopy PRI for water stress detection with diurnal airborne imagery. Remote Sens Environ 112:560–575.  https://doi.org/10.1016/j.rse.2007.05.009 CrossRefGoogle Scholar
  148. Swann ALS et al (2018) Continental-scale consequences of tree die-offs in North America: identifying where forest loss matters most. Environ Res Lett 13:055014.  https://doi.org/10.1088/1748-9326/aaba0f CrossRefGoogle Scholar
  149. Swatantran A, Dubayah R, Roberts D, Hofton M, Blair JB (2011) Mapping biomass and stress in the Sierra Nevada using lidar and hyperspectral data fusion. Remote Sens Environ 115:2917–2930.  https://doi.org/10.1016/j.rse.2010.08.027 CrossRefGoogle Scholar
  150. Thompson DR, Natraj V, Green RO, Helmlinger MC, Gao B-C, Eastwood ML (2018) Optimal estimation for imaging spectrometer atmospheric correction. Remote Sens Environ 216:355–373.  https://doi.org/10.1016/j.rse.2018.07.003 CrossRefGoogle Scholar
  151. Thompson DR, Guanter L, Berk A, Gao B-C, Richter R, Schläpfer D, Thome KJ (2019) Retrieval of atmospheric parameters and surface reflectance from visible and shortwave infrared imaging spectroscopy data. Surv Geophys.  https://doi.org/10.1007/s10712-018-9488-9 CrossRefGoogle Scholar
  152. Townsend PA, Foster JR, Chastain RA, Currie WS (2003) Application of imaging spectroscopy to mapping canopy nitrogen in the forests of the central Appalachian Mountains using Hyperion and AVIRIS. IEEE Trans Geosci Remote Sens 41:1347–1354.  https://doi.org/10.1109/tgrs.2003.813205 CrossRefGoogle Scholar
  153. Townsend PA, Serbin SP, Kruger EL, Gamon JA (2013) Disentangling the contribution of biological and physical properties of leaves and canopies in imaging spectroscopy data. Proc Natl Acad Sci 110:E1074.  https://doi.org/10.1073/pnas.1300952110 CrossRefGoogle Scholar
  154. Townsend PA, Wang Z, Singh A (2017) Prospects for universal foliar trait-retrieval algorithms from imaging spectroscopy: cross-site and cross-platform. Paper presented at the 10th EARSeL SIG imaging spectroscopy workshop, Zurich, SwitzerlandGoogle Scholar
  155. Ustin SL, Roberts DA, Gamon JA, Asner GP, Green RO (2004) Using imaging spectroscopy to study ecosystem processes and properties. Bioscience 54:523–534.  https://doi.org/10.1641/0006-3568(2004)054%5b0523:uistse%5d2.0.co;2 CrossRefGoogle Scholar
  156. Ustin SL, Gitelson AA, Jacquemoud S, Schaepman M, Asner GP, Gamon JA, Zarco-Tejada P (2009) Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sens Environ 113:S67–S77.  https://doi.org/10.1016/j.rse.2008.10.019 CrossRefGoogle Scholar
  157. Verhoef W (1984) Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote Sens Environ 16:125–141.  https://doi.org/10.1016/0034-4257(84)90057-9 CrossRefGoogle Scholar
  158. Vermote E, Justice C, Claverie M, Franch B (2016) Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens Environ 185:46–56.  https://doi.org/10.1016/j.rse.2016.04.008 CrossRefGoogle Scholar
  159. Verrelst J, Camps-Valls G, Muñoz-Marí J, Rivera JP, Veroustraete F, Clevers JGPW, Moreno J (2015) Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties—a review. ISPRS J Photogramm Remote Sens 108:273–290.  https://doi.org/10.1016/j.isprsjprs.2015.05.005 CrossRefGoogle Scholar
  160. Verrelst J et al (2019) Quantifying vegetation biophysical variables from imaging spectroscopy data: a review on retrieval methods. Surv Geophys.  https://doi.org/10.1007/s10712-018-9478-y CrossRefGoogle Scholar
  161. Vohland M, Ludwig M, Harbich M, Emmerling C, Thiele-Bruhn S (2016) Using variable selection and wavelets to exploit the full potential of visible/near infrared spectra for predicting soil properties. J Near Infrared Spectrosc 24:255–269.  https://doi.org/10.1255/jnirs.1233 CrossRefGoogle Scholar
  162. Wang Z, Skidmore AK, Wang T, Darvishzadeh R, Hearne J (2015) Applicability of the PROSPECT model for estimating protein and cellulose + lignin in fresh leaves. Remote Sens Environ 168:205–218.  https://doi.org/10.1016/j.rse.2015.07.007 CrossRefGoogle Scholar
  163. Wang Z et al (2017) Canopy foliar nitrogen retrieved from airborne hyperspectral imagery by correcting for canopy structure effects. Int J Appl Earth Obs Geoinf 54:84–94.  https://doi.org/10.1016/j.jag.2016.09.008 CrossRefGoogle Scholar
  164. Wang Z, Skidmore AK, Darvishzadeh R, Wang T (2018) Mapping forest canopy nitrogen content by inversion of coupled leaf-canopy radiative transfer models from airborne hyperspectral imagery. Agric For Meteorol 253–254:247–260.  https://doi.org/10.1016/j.agrformet.2018.02.010 CrossRefGoogle Scholar
  165. Wang Z, Townsend PA, Schweiger AK, Couture JJ, Singh A, Hobbie SE, Cavender-Bares J (2019) Mapping foliar functional traits and their uncertainties across three years in a grassland experiment. Remote Sens Environ 221:405–416.  https://doi.org/10.1016/j.rse.2018.11.016 CrossRefGoogle Scholar
  166. Waske B, van der Linden S, Oldenburg C, Jakimow B, Rabe A, Hostert P (2012) imageRF—a user-oriented implementation for remote sensing image analysis with Random Forests. Environ Model Softw 35:192–193.  https://doi.org/10.1016/j.envsoft.2012.01.014 CrossRefGoogle Scholar
  167. Wessman CA, Aber JD, Peterson DL, Melillo JM (1988) Remote sensing of canopy chemistry and nitrogen cycling in temperate forest ecosystems. Nature 335:154.  https://doi.org/10.1038/335154a0 CrossRefGoogle Scholar
  168. Wessman CA, Aber JD, Peterson DL (1989) An evaluation of imaging spectrometry for estimating forest canopy chemistry. Int J Remote Sens 10:1293–1316.  https://doi.org/10.1080/01431168908903969 CrossRefGoogle Scholar
  169. White HP, Miller JR, Chen JM (2001) Four-scale linear model for anisotropic reflectance (FLAIR) for plant canopies. I. Model description and partial validation. IEEE Trans Geosci Remote Sens 39:1072–1083.  https://doi.org/10.1109/36.921425 CrossRefGoogle Scholar
  170. White JC, Coops NC, Hilker T, Wulder MA, Carroll AL (2007) Detecting mountain pine beetle red attack damage with EO-1 Hyperion moisture indices. Int J Remote Sens 28:2111–2121.  https://doi.org/10.1080/01431160600944028 CrossRefGoogle Scholar
  171. Wold S, Ruhe A, Wold H, Dunn IW (1984) The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM J Sci Stat Comput 5:735–743.  https://doi.org/10.1137/0905052 CrossRefGoogle Scholar
  172. Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemometr Intell Lab Syst 58:109–130.  https://doi.org/10.1016/S0169-7439(01)00155-1 CrossRefGoogle Scholar
  173. Wolter PT, Townsend PA, Sturtevant BR (2009) Estimation of forest structural parameters using 5 and 10 meter SPOT-5 satellite data. Remote Sens Environ 113:2019–2036.  https://doi.org/10.1016/j.rse.2009.05.009 CrossRefGoogle Scholar
  174. Yáñez-Rausell L, Malenovský Z, Clevers JGPW, Schaepman ME (2014a) Minimizing measurement uncertainties of coniferous needle-leaf optical properties. Part II: experimental setup and error analysis. IEEE J Sel Top Appl Earth Obs Remote Sens 7:406–420.  https://doi.org/10.1109/jstars.2013.2292817 CrossRefGoogle Scholar
  175. Yáñez-Rausell L, Schaepman ME, Clevers JGPW, Malenovský Z (2014b) Minimizing measurement uncertainties of coniferous needle-leaf optical properties, part I: methodological review. IEEE J Sel Top Appl Earth Obs Remote Sens 7:399–405.  https://doi.org/10.1109/jstars.2013.2272890 CrossRefGoogle Scholar
  176. Zhang Q, Middleton EM, Gao B, Cheng Y (2012) Using EO-1 Hyperion to simulate HyspIRI products for a coniferous forest: the fraction of PAR absorbed by chlorophyll (fAPAR_chl) and leaf water content (LWC). IEEE Trans Geosci Remote Sens 50:1844–1852.  https://doi.org/10.1109/tgrs.2011.2169267 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Environmental Remote Sensing and GeoinformaticsTrier UniversityTrierGermany
  2. 2.Department of Forest and Wildlife EcologyUniversity of WisconsinMadisonUSA

Personalised recommendations