Advertisement

Coastal Sea Level and Related Fields from Existing Observing Systems

  • Marta MarcosEmail author
  • Guy Wöppelmann
  • Andrew Matthews
  • Rui M. Ponte
  • Florence Birol
  • Fabrice Ardhuin
  • Giovanni Coco
  • Alvaro Santamaría-Gómez
  • Valerie Ballu
  • Laurent Testut
  • Don Chambers
  • Justin E. Stopa
Article

Abstract

We review the status of current sea-level observing systems with a focus on the coastal zone. Tide gauges are the major source of coastal sea-level observations monitoring most of the world coastlines, although with limited extent in Africa and part of South America. The longest tide gauge records, however, are unevenly distributed and mostly concentrated along the European and North American coasts. Tide gauges measure relative sea level but the monitoring of vertical land motion through high-precision GNSS, despite being essential to disentangle land and ocean contributions in tide gauge records, is only available in a limited number of stations. (25% of tide gauges have a GNSS station at less than 10 km.) Other data sources are new in situ observing systems fostered by recent progress in GNSS data processing (e.g., GPS reflectometry, GNSS-towed platforms) and coastal altimetry currently measuring sea level as close as 5 km from the coastline. Understanding observed coastal sea level also requires information on various contributing processes, and we provide an overview of some other relevant observing systems, including those on (offshore and coastal) wind waves and water density and mass changes.

Keywords

Sea-level observations Tide gauges Coastal altimetry GNSS Wind waves Ocean bottom pressure Hydrography 

Notes

References

  1. Andersen OB, Nielsen K, Knudsen P, Hughes CW, Bingham R, Fenoglio-Marc L, Gravelle M, Kern M, Polo SP (2018) Improving the coastal mean dynamic topography by geodetic combination of tide gauge and satellite altimetry. Mar Geod.  https://doi.org/10.1080/01490419.2018.1530320 CrossRefGoogle Scholar
  2. André BG, Martín Míguez B, Ballu V et al (2013) Measuring sea level with GPS-equipped buoys: a multi-instruments experiment at Aix Island. Int Hyrographic Rev 10:27–38Google Scholar
  3. Apotsos A, Raubenheimer B, Elgar S, Guza RT, Smith JA (2007) Effects of wave rollers and bottom stress on wave setup. J Geophys Res Oceans.  https://doi.org/10.1029/2006JC003549 CrossRefGoogle Scholar
  4. Ardhuin F, Drake TG, Herbers THC (2002) Observations of wave-generated vortex ripples on the North Carolina continental shelf. J Geophys Res 107:C10.  https://doi.org/10.1029/2001JC000986 CrossRefGoogle Scholar
  5. Ardhuin F, Devaux E, Pineau-Guillou L (2010) Observation et prévision des seiches sur la côte atlantique française. Actes des Xèmes Journées Génie côtier-Génie civil, Les Sables d’Olonne.  https://doi.org/10.5150/jngcgc.2010.001-a CrossRefGoogle Scholar
  6. Ardhuin F, Rascle N, Chapron B, Gula J, Molemaker J, Gille ST, Menemenlis D, Rocha C (2017) Small scale currents have large effects on wind wave heights. J Geophys Res 122(C6):4500–4517.  https://doi.org/10.1002/2016JC012413 CrossRefGoogle Scholar
  7. Ardhuin F, Aksenov Y, Benetazzo A, Bertino L, Brandt P, Caubet E, Chapron B, Collard F, Cravatte S, Dias F, Dibarboure G, Gaultier L, Johannessen J, Korosov A, Manucharyan G, Menemenlis D, Menendez M, Monnier G, Mouche A, Nouguier F, Nurser G, Rampal P, Reniers A, Rodriguez E, Stopa J, Tison C, Tissier M, Ubelmann C, van Sebille E, Vialard J, Xie J (2018) Measuring currents, ice drift, and waves from space: the sea surface kinematics multiscale monitoring (SKIM) concept. Ocean Sci 14:337–354.  https://doi.org/10.5194/os-2017-65 CrossRefGoogle Scholar
  8. Ballu V, Bouin M-N, Calmant S et al (2010) Absolute seafloor vertical positioning using combined pressure gauge and kinematic GPS data. J Geod 84:65.  https://doi.org/10.1007/s00190-009-0345-y CrossRefGoogle Scholar
  9. Ballu V, Testut L, Poirier E et al (2017) Mapping the sealevel for altimetry calibration purpose using the future PAMELi marine ASV around the Aix Island sea-level observatory. In: 2017 Ocean surface topography science team meeting, MiamiGoogle Scholar
  10. Battjes JA (1982) A case study of wave height variations due to currents in a tidal entrance. Coast Eng 6:47–57CrossRefGoogle Scholar
  11. Bergmann I, Dobslaw H (2012) Short-term transport variability of the Antarctic Circumpolar Current from satellite gravity observations. J Geophys Res.  https://doi.org/10.1029/2012jc007872 CrossRefGoogle Scholar
  12. Bertin X, de Bakker A, van Dongeren A, Coco G, Andre G, Ardhuin F, Bonneton P, Bouchette F, Castelle B, Crawford W, Deen M, Dodet G, Guerin T, Leckler F, McCall R, Muller H, Olabarrieta M, Ruessink G, Sous D, Stutzmann E, Tissier M (2018) Infragravity waves: from driving mechanisms to impacts. Earth Sci Rev 177:774–799.  https://doi.org/10.1016/j.earscirev.2018.01.002 CrossRefGoogle Scholar
  13. Birol F, Fuller N, Lyard F, Cancet M, Niño F, Delebecque C, Fleury S, Toublanc F, Melet A, Saraceno M, Leger F (2016) Coastal applications from nadir altimetry: example of the X-TRACK regional products. Adv Space Res.  https://doi.org/10.1016/j.asr.2016.11.005 CrossRefGoogle Scholar
  14. Boening C, Willis JK, Landerer FW, Nerem RS, Fasullo J (2012) The 2011 La Niña: So strong, the oceans fell. Geophys Res Lett.  https://doi.org/10.1029/2012gl053055 CrossRefGoogle Scholar
  15. Bonnefond P, Exertier P, Laurain O et al (2003a) Absolute calibration of Jason-1 and TOPEX/Poseidon altimeters in Corsica special issue: Jason-1 calibration/validation. Mar Geod 26:261–284.  https://doi.org/10.1080/714044521 CrossRefGoogle Scholar
  16. Bonnefond P, Exertier P, Laurain O et al (2003b) Leveling the sea surface using a GPS-catamaran special issue: Jason-1 calibration/validation. Mar Geod 26:319–334.  https://doi.org/10.1080/714044524 CrossRefGoogle Scholar
  17. Born GH, Michael PE, Axelrad P et al (1994) Calibration of the TOPEX altimeter using a GPS buoy. J Geophys Res Ocean 99:24517–24526.  https://doi.org/10.1029/94JC00920 CrossRefGoogle Scholar
  18. Bouin M-N, Ballu V, Calmant S et al (2009a) A kinematic GPS methodology for sea surface mapping. Vanuatu J Geod 83:1203.  https://doi.org/10.1007/s00190-009-0338-x CrossRefGoogle Scholar
  19. Bouin M-N, Ballu V, Calmant S, Pelletier B (2009b) Improving resolution and accuracy of mean sea surface from kinematic GPS, Vanuatu subduction zone. J Geod 83:1017.  https://doi.org/10.1007/s00190-009-0320-7 CrossRefGoogle Scholar
  20. Boutin J, Vergely JL, Marchand S, D’Amico F, Hasson A, Kolodziejczyk N, Reul N, Reverdin G, Vialard J (2018) New SMOS Sea Surface Salinity with reduced systematic errors and improved variability. Remote Sens Environ 214:115–134.  https://doi.org/10.1016/j.rse.2018.05.022 CrossRefGoogle Scholar
  21. Bradshaw E, Rickards L, Aarup T (2015) Sea level data archaeology and the Global Sea Level Observing System (GLOSS). Geo Res J 6:9–16.  https://doi.org/10.1016/j.grj.2015.02.005 CrossRefGoogle Scholar
  22. Brewin RJW, de Mora L, Billson O, Jackson T, Russell P, Brewin TG, Shutler JD, Miller PI, Taylor BH, Smyth TJ, Fishwick JR (2017) Evaluating operational AVHRR sea surface temperature data at the coastline using surfers. Estuar Coast Shelf Sci 196:276–289.  https://doi.org/10.1016/j.ecss.2017.07.011 CrossRefGoogle Scholar
  23. Calafat FM, Wahl T, Lindsten F, Williams J, Frajka-Williams E (2018) Coherent modulation of the sea-level annual cycle in the United States by Atlantic Rossby waves. Nat Commun 9:2571.  https://doi.org/10.1038/s41467-018-04898-y CrossRefGoogle Scholar
  24. Calzas M, Brachet C, Drezen C et al (2014) New technological development for cal/val activities. In: 2014 Ocean surface topography science team meeting. Lake Constance, GermanyGoogle Scholar
  25. Cariolet J-M, Suanez S (2013) Runup estimations on a macrotidal sandy beach. Coast Eng 74:11–18CrossRefGoogle Scholar
  26. Cartwright DE (1977) Oceanic tides. Rep Prog Phys 40:665–708CrossRefGoogle Scholar
  27. Chambers DP, Bonin JA (2012) Evaluation of Release-05 GRACE time-variable gravity coefficients over the ocean. Ocean Sci 8:1–10.  https://doi.org/10.5194/os-8-1-2012 CrossRefGoogle Scholar
  28. Chambers DP, Wahr J, Nerem RS (2004) Preliminary observations of global ocean mass variations with GRACE. Geophys Res Lett 31:L13310.  https://doi.org/10.1029/2004GL020461 CrossRefGoogle Scholar
  29. Chambers DP, Cazenave A, Champollion N, Dieng H, Llovel W, Forsberg R, von Schuckmann K, Wada Y (2017) Evaluation of the global mean sea level budget between 1993 and 2014. Surv Geophys 38:309–327.  https://doi.org/10.1007/s10712-016-9381-3 CrossRefGoogle Scholar
  30. Chen JL, Wilson CR, Tapley BD (2013) Contribution of ice sheet and mountain glacier melt to recent sea level rise. Nat Geosci 6:549–552.  https://doi.org/10.1038/NGEO1829 CrossRefGoogle Scholar
  31. Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne AJ, Pfeffer WT, Stammer D, Unnikrishnan AS (2013) Sea level change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  32. Cipollini P, Calafat FM, Jevrejeva S, Melet S, Prandi P (2017) Monitoring sea level in the coastal zone with satellite altimetry and tide gauges. Surv Geophys 38(1):33–57.  https://doi.org/10.1007/s10712-016-9392-0 CrossRefGoogle Scholar
  33. Coco G, Senechal N, Rejas A, Bryan KR, Capo S, Parisot JP, Brown JA, MacMahan JHM (2014) Beach response to a sequence of extreme storms. Geomorphology 204:493–501CrossRefGoogle Scholar
  34. Coulombier T, Ballu V, Pineau P et al (2018) PAMELi, un drone marin de surface au service de l’interdisciplinarité. Paralia 15:337–344.  https://doi.org/10.5150/jngcgc.2018.038 CrossRefGoogle Scholar
  35. Dangendorf S, Marcos M, Woppelmann G, Conrad CP, Frederikse T, Riva R (2017) Reassessment of 20th century global mean sea level rise. PNAS.  https://doi.org/10.1073/pnas.1616007114 CrossRefGoogle Scholar
  36. Dinardo S, Fenoglio-Marc L, Buchhaupt C, Becker M, Scharro R, Fernandez J, Benveniste J (2017) CryoSat-2 performance along the german coasts. AdSR Special Issue CryoSat-2.  https://doi.org/10.1016/j.asr.2017.12.018
  37. Dinardo S, Fenoglio-Marc L, Buchhaupt C, Becker M, Scharroo R, Fernandes MJ, Benveniste J (2018) Coastal SAR and PLRM altimetry in German Bight and West Baltic Sea. Adv Space Res 62(6):1371–1404.  https://doi.org/10.1016/j.asr.2017.12.018 CrossRefGoogle Scholar
  38. Dodet G, Melet A, Ardhuin F, Almar R, Bertin X, Idier D, Pedredos R (in review) The contribution of wind generated waves to coastal sea level changes. Surv GeophysGoogle Scholar
  39. Donlon C, Rayner N, Robinson I, Poulter DJS, Casey KS, Vazquez-Cuervo J, Armstrong E, Bingham A, Arino O, Gentemann C et al (2007) The global ocean data assimilation experiment high-resolution sea surface temperature pilot project. Bull Am Meteorol Soc 88:1197–1213CrossRefGoogle Scholar
  40. Donlon CJ, Casey KS, Robinson IS, Gentemann CL, Reynolds RW, Barton I, Arino O, Stark J, Rayner N, LeBorgne P, Poulter D, Vazquez-Cuervo J, Armstrong E, Beggs H, Llewellyn-Jones D, Minnett PJ, Merchant CJ, Evans R (2009) GODAE high-resolution sea surface temperature pilot project. Oceanography 22(3):34–45.  https://doi.org/10.5670/oceanog.2009.64 CrossRefGoogle Scholar
  41. Dugan JP, Morris WD, Vierra KC, Piotrowski CC, Farruggia GJ, Campion DC (2001) Jetski-based nearshore bathymetric and current survey system. J Coast Res 17:900–908Google Scholar
  42. Durand M, Fu L-L, Lettenmaier DP, Alsdorf DE, Rodriguez E, Esteban-Fernandez D (2010) The surface water and ocean topography mission: observing terrestrial surface water and oceanic submesoscale eddies. Proc IEEE 98:766–779.  https://doi.org/10.1109/jproc.2010.2043031 CrossRefGoogle Scholar
  43. Durand F, Calmant S, Calzas M et al (2017) Geodetic survey of the freshwater front of the Ganges-Brahmaputra freshwater plume in the northern Bay of Bengal from Calnageo GNSS device. In: 2017 Ocean surface topography science team meetingGoogle Scholar
  44. Durand F, Piecuch C, Cirano M, Becker M, Papa F (in review) Runoff impact on coastal sea level. Surv GeophysGoogle Scholar
  45. Elgar S, Guza RT, Raubenheimer B, Herbers THC, Gallagher EL (1997) Spectral evolution of shoaling and breaking waves on a barred beach. J Geophys Res Oceans 102(C7):15797–15805CrossRefGoogle Scholar
  46. Fantino M, Marucco G, Mulassano P, Pini M (2008) Performance analysis of MBOC, AltBOC and BOC modulations in terms of multipath effects on the carrier tracking loop within GNSS receivers. In: IEEE/ION position, location and navigation symposium.  https://doi.org/10.1109/plans.2008.4570092
  47. Fasullo JT, Boening C, Landerer FW, Nerem RS (2013) Australia’s unique influence on global sea level in 2010–2011. Geophys Res Lett 40:4368–4373.  https://doi.org/10.1002/grl.50834 CrossRefGoogle Scholar
  48. Fenoglio-Marc L, Becker M, Rietbroeck R, Kusche J, Grayek S, Stanev E (2012) Water mass variation in Mediterranean and Black Sea. J Geodyn.  https://doi.org/10.1016/j.jog.2012.04.001 CrossRefGoogle Scholar
  49. Fiedler JW, Brodie KL, McNinch JE, Guza RT (2015) Observations of runup and energy flux on a low-slope beach with high-energy, long-period ocean swell. Geophys Res Lett 42:9933–9941.  https://doi.org/10.1002/2015GL066124 CrossRefGoogle Scholar
  50. Foster JH, Carter GS, Merrifield MA (2009) Ship-based measurements of sea surface topography. Geophys Res Lett 36:L11605.  https://doi.org/10.1029/2009GL038324 CrossRefGoogle Scholar
  51. Fund F, Perosanz F, Testut L, Loyer S (2013) An Integer Precise Point Positioning technique for sea surface observations using a GPS buoy. Adv Space Res 51:1311–1322.  https://doi.org/10.1016/j.asr.2012.09.028 CrossRefGoogle Scholar
  52. Gemmrich J, Thomas B, Bouchard R (2011) Observational changes and trends in northeast Pacific wave records. Geophys Res Lett 38:L22601.  https://doi.org/10.1029/2011GL049518 CrossRefGoogle Scholar
  53. Gommenginger CP, Srokosz MA, Challenor PG, Cotton PD (2003) Measuring ocean wave period with satellite altimeters: a simple empirical model. Geophys Res Lett 30(22):2150.  https://doi.org/10.1029/2003GL017743 CrossRefGoogle Scholar
  54. Gulev SK, Grigorieva V, Sterl A, Woolf D (2003) Assessment of the reliability of wave observations from voluntary observing ships: insights from the validation of a global wind wave climatology based on voluntary observing ship data. J Geophys Res 108(C7):3236CrossRefGoogle Scholar
  55. Guza RT, Thornton EB (1981) Wave set-up on a natural beach. J Geophys Res Oceans 86(C5):4133–4137CrossRefGoogle Scholar
  56. Haines B, Desai S, Dodge A et al (2017) Connecting Jason-3 to the long-term sea level record: results from harvest and regional campaigns. In: 2017 Ocean surface topography science team meetingGoogle Scholar
  57. Hauser D, Tison C, Amiot T, Delaye L, Corcoral N, Castillan P (2017) SWIM: the first spaceborne wave scatterometer. IEEE Trans Geosci Remote Sens 55(5):3000–3014CrossRefGoogle Scholar
  58. Hedley J, Roelfsema C, Koetz B, Phinn S (2012) Capability of the Sentinel 2 mission for tropical coral reef mapping and coral bleaching detection. Remote Sens Environ 120:145–155.  https://doi.org/10.1016/j.rse.2011.06.028 CrossRefGoogle Scholar
  59. Hein GW, Landau H, Blomenhofer H (1990) Determination of instantaneous sea surface, wave heights, and ocean currents using satellite observations of the global positioning system. Mar Geod 14:217–224.  https://doi.org/10.1080/15210609009379664 CrossRefGoogle Scholar
  60. Hogarth P (2014) Preliminary analysis of acceleration of sea level rise through the twentieth century using extended tide gauge data sets (August 2014). J Geophys Res Oceans 119:7645–7659.  https://doi.org/10.1002/2014JC009976 CrossRefGoogle Scholar
  61. Holgate SJ, Matthews A, Woodworth PL, Rickards LJ, Tamisiea ME, Bradshaw E, Foden PR, Gordon KM, Jevrejeva S, Pugh J (2013) New data systems and products at the Permanent Service for Mean Sea Level. J Coast Res 29:493–504Google Scholar
  62. Holman RA, Stanley J (2007) The history and technical capabilities of Argus. Coast Eng 54(6–7):477–491CrossRefGoogle Scholar
  63. Holman R, Plant N, Holland T (2013) cBathy: a robust algorithm for estimating nearshore bathymetry. J Geophys Res Oceans 118(5):2595–2609CrossRefGoogle Scholar
  64. Hughes CW, Tamisiea ME, Bingham RJ, Williams J (2012) Weighing the ocean: using a single mooring to measure changes in the mass of the ocean. Geophys Res Lett 39:L17602.  https://doi.org/10.1029/2012GL052935 CrossRefGoogle Scholar
  65. Intergovernmental Oceanographic Commission (IOC) (1985) Manual on sea level measurement and interpretation (volume I: basic procedures). Intergovernmental Oceanographic Commission Manuals and Guides, vol 14. UNESCO, Paris. http://www.psmsl.org/train_and_info/training/manuals/ioc_14i.pdf. Accessed July 2018
  66. Jensen L, Rietbroek R, Kusche J (2013) Land water contribution to sea level from GRACE and Jason-1 measurements. J Geophys Res Oceans 118:212–226.  https://doi.org/10.1002/jgrc.20058 CrossRefGoogle Scholar
  67. Johnson GF, Chambers DP (2013) Ocean Bottom Pressure Seasonal Cycles and Decadal Trends from GRACE Release-05: ocean Circulation Implications. J Geophys Res Oceans 118:1–13.  https://doi.org/10.1002/jgrc.20307 CrossRefGoogle Scholar
  68. Köhler J, Serra N, Bryan FO, Johnson BK, Stammer D (2018) Mechanisms of mixed-layer salinity seasonal variability in the Indian Ocean. J Geophys Res Oceans 123:466–496.  https://doi.org/10.1002/2017JC013640 CrossRefGoogle Scholar
  69. Landerer FW, Wiese DN, Bentel K, Boening C, Watkins MM (2015) North Atlantic meridional overturning circulation variations from GRACE ocean bottom pressure anomalies. Geophys Res Lett 42:8114–8121.  https://doi.org/10.1002/2015gl065730 CrossRefGoogle Scholar
  70. Larson KM, Ray RD, Nievinski FG, Freymueller JT (2013) The Accidental tide gauge: a GPS reflection case study from Kachemak Bay, Alaska. IEEE Geosci Remote Sens Lett 10:1200–1204CrossRefGoogle Scholar
  71. Laurichesse D, Mercier F, Berthias J-P et al (2009) Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. Navigation 56:135–149.  https://doi.org/10.1002/j.2161-4296.2009.tb01750.x CrossRefGoogle Scholar
  72. Lemoine FG, Luthcke SB, Rowlands DD, Chinn DS, Klosko SM, Cox CM (2007) The use of mascons to resolve time-variable gravity from GRACE. In: Tregoning P, Rizos C (eds) Dynamic planet: monitoring and understanding a dynamic planet with geodetic and oceanographic tools. International Association of Geodesy, vol 130. Springer, Berlin, pp 231–236CrossRefGoogle Scholar
  73. Leuliette EW, Miller L (2009) Closing the sea level rise budget with altimetry, Argo, and GRACE. Geophys Res Lett 36:L04608.  https://doi.org/10.1029/2008GL036010 CrossRefGoogle Scholar
  74. Lowe RJ, Falte JL, Koseff JR, Monismith SG, Atkinson MJ (2007) Spectral wave flow attenuation within submerged canopies: implications for wave energy dissipation. J Geophys Res.  https://doi.org/10.1029/2006jc003605 CrossRefGoogle Scholar
  75. Magne R, Belibassakis K, Herbers THC, Ardhuin F, O’Reilly WC, Rey V (2007) Evolution of surface gravity waves over a submarine canyon. J Geophys Res.  https://doi.org/10.1029/2005jc003035 CrossRefGoogle Scholar
  76. Makowski JK, Chambers DP, Bonin JA (2015) Using ocean bottom pressure from the gravity recovery and climate experiment (GRACE) to estimate transport variability in the Southern Indian Ocean. J Geophys Res Oceans 120:4245–4259.  https://doi.org/10.1002/2014jc010575 CrossRefGoogle Scholar
  77. Marcos M, Puyol B, Wöppelmann G, Herrero C, García-Fernández MJ (2011) The long sea level record at Cadiz (southern Spain) from 1880 to 2009. J Geophys Res 116:C12003.  https://doi.org/10.1029/2011JC007558 CrossRefGoogle Scholar
  78. Martín Míguez B, Le Roy R, Wöppelmann G (2008) The use of radar tide gauges to measure variations in sea level along the French Coast. J Coast Res 24:61–68CrossRefGoogle Scholar
  79. Martín Míguez B, Testut L, Woppelmann G (2012) Performance of modern tide gauges: towards mm-level accuracy. Sci Mar 76:221–228.  https://doi.org/10.3989/scimar.03618.18a CrossRefGoogle Scholar
  80. Masselink G, Scott T, Poate T, Russell P, Davidson M, Conley D (2016) The extreme 2013/2014 winter storms: hydrodynamic forcing and coastal response along the southwest coast of England. Earth Surf Proc Land 41(3):378–391CrossRefGoogle Scholar
  81. Mastenbroek C, Burgers G, Janssen PAEM (1993) The dynamical coupling of a wave model and a storm surge model through the atmospheric boundary layer. J Phys Oceanogr 23:1856–1867CrossRefGoogle Scholar
  82. Meade RH, Emery KO (1971) Sea level as affected by river runoff, eastern United States. Science 173(3995):425–428CrossRefGoogle Scholar
  83. Mecklenburg S, Drusch M, Kaleschke L, Rodriguez-Fernandez N, Reul N, Kerr Y, Font J, Martin-Neira M, Oliva R, Daganzo-Eusebio E, Grant JP, Sabia R, Macelloni G, Rautiainen K, Fauste J, de Rosnay P, Munoz-Sabater J, Verhoest N, Lievens H, Delwart S, Crapolicchio R, de la Fuente A, Kornberg M (2016) ESA’s Soil Moisture and Ocean Salinity mission: from science to operational applications. Remote Sens Environ 180:3–18.  https://doi.org/10.1016/j.rse.2015.12.025 CrossRefGoogle Scholar
  84. Meinig C, Stalin SE, Nakamura AI, Milburn HB (2005) Real-time deep-ocean tsunami measuring, monitoring, and reporting system: The NOAA DART II description and disclosure. NOAA, Pacific Marine Environmental Laboratory (PMEL), pp 1–15Google Scholar
  85. Meyssignac B, Piecuch CG, Merchant CJ, Racault M-F, Palanisamy H, MacIntosh C, Sathyendranath S, Brewin R (2017) Causes of the regional variability in observed sea level, sea surface temperature and ocean color over the period 1993-2011. Surv Geophys 38:187–215.  https://doi.org/10.1007/s10712-016-9383-1 CrossRefGoogle Scholar
  86. Monismith SG, Rogers JS, Koweek D, Dunbar RB (2015) Frictional wave dissipation on a remarkably rough reef. Geophys Res Lett 112:4063–4071.  https://doi.org/10.1002/2015GL063804 CrossRefGoogle Scholar
  87. Munk WH, Traylor MA (1947) Refraction of ocean waves: a process linking underwater topography to beach erosion. J Geol 51:1–26CrossRefGoogle Scholar
  88. Neale J, Harmon N, Srokosz M (2015) Source regions and reflection of infragravity waves offshore of the U.S.s Pacific Northwest. J Geophys Res Oceans 120:6474–6491.  https://doi.org/10.1002/2015JC010891 CrossRefGoogle Scholar
  89. Okihiro M, Guza RT, Seymour RJ (1993) Excitation of seiche observed in a small harbor. J Geophys Res 98(C10):18201–18211CrossRefGoogle Scholar
  90. Pattiaratchi C, Woo LM, Thomson PG, Hong KK, Stanley D (2017) Ocean glider observations around Australia. Oceanography 30(2):90–91.  https://doi.org/10.5670/oceanog.2017.226 CrossRefGoogle Scholar
  91. Penna NT, Morales Maqueda MA, Martin I et al (2018) Sea surface height measurement using a GNSS wave glider. Geophys Res Lett 45:5609–5616.  https://doi.org/10.1029/2018GL077950 CrossRefGoogle Scholar
  92. Pérez Gómez B, Donato V, Hibbert A, Marcos M, Raicich F, Hammarklint T, Testut L, Annunziato A, Westbrook G, Gyldenfeldt A, Gorringe P (2017) Recent efforts for an increased coordination of sea level monitoring in Europe: EuroGOOS Tide Gauge Task Team. In: International WCRP/IOC conference 2017: regional sea level changes and costal impacts, New YorkGoogle Scholar
  93. Piecuch CG, Quinn KJ, Ponte RM (2013) Satellite-derived interannual ocean bottom pressure variability and its relation to sea level. Geophys Res Lett 40:3106–3110.  https://doi.org/10.1002/grl.50549 CrossRefGoogle Scholar
  94. Piecuch CG, Bitterman K, Kemp AC, Ponte RM, Little CM, Engelhart SE, Lentz SJ (2018a) River-discharge effects on United States Atlantic and Gulf coast sea-level changes. Proc Natl Acad Sci.  https://doi.org/10.1073/pnas.1805428115 CrossRefGoogle Scholar
  95. Piecuch CG, Landerer FW, Ponte RM (2018b) Tide gauge records reveal improved processing of gravity recovery and climate experiment time-variable mass solutions over the coastal ocean. Geophys J Int 214:1401–1412.  https://doi.org/10.1093/gji/ggy207 CrossRefGoogle Scholar
  96. Pineau-Guillou L, Ardhuin F, Bouin M-N, Redelsperger J-L, Chapron B, Bidlot J, Quilfen Y (2018) Strong winds in a coupled wave-atmosphere model during a north atlantic storm event: evaluation against observations. Q J R Meteorol Soc 144:317–332.  https://doi.org/10.1002/qj.3205 CrossRefGoogle Scholar
  97. Pleskachevsky A, Dobrynin M, Babanin AV, Günther H, Stanev E (2011) Turbulent mixing due to surface waves indicated by remote sensing of suspended particulate matter and its implementation into coupled modeling of waves, turbulence, and circulation. J Phys Oceanogr 41:708–724.  https://doi.org/10.1175/2010JPO4328.1 CrossRefGoogle Scholar
  98. Poate TG, McCall RT, Masselink G (2016) A new parameterisation for runup on gravel beaches. Coast Eng 117:176–190.  https://doi.org/10.1016/j.coastaleng.2016.08.003 CrossRefGoogle Scholar
  99. Polster A, Fabian M, Villinger H (2009) Effective resolution and drift of Paroscientific pressure sensors derived from longterm seafloor measurements. Geochem Geophy Geosyst 10:Q08008.  https://doi.org/10.1029/2009GC002532 CrossRefGoogle Scholar
  100. Ponte RM, Piecuch CG (2014) Interannual bottom pressure signals in the Australian-Antarctic and Bellingshausen Basins. J Phys Ocean 44:1456–1465.  https://doi.org/10.1175/JPO-D-13-0223.1 CrossRefGoogle Scholar
  101. Pugh D, Woodworth PL (2014) Sea-level science: understanding tides, surges, tsunamis and mean sea-level changes. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9781139235778. ISBN 9781139235778CrossRefGoogle Scholar
  102. Quilfen Y, Chapron B, Collard F, Serre M (2004) Calibration/validation of an altimeter wave period model and application to TOPEX/Poseidon and Jason-1 altimeters. Mar Geod 27(3–4):535–549.  https://doi.org/10.1080/01490410490902025 CrossRefGoogle Scholar
  103. Raubenheimer B (2002) Observations and predictions of fluid velocities in the surf and swash zones. J Geophys Res Oceans 107(C11):11-1–11-7CrossRefGoogle Scholar
  104. Raubenheimer B, Guza RT, Elgar S (2001) Field observations of wave‐driven setdown and setup. J Geophys Res Oceans 106(C3):4629–4638CrossRefGoogle Scholar
  105. Rawat A, Ardhuin F, Ballu V, Crawford W, Corela C, Aucan J (2014) Infragravity waves across the oceans. Geophys Res Lett 41:7957–7963.  https://doi.org/10.1002/2014GL061604 CrossRefGoogle Scholar
  106. Ray RD (2013) Precise comparisons of bottom-pressure and altimetric ocean tides. J Geophys 118:4570–4584Google Scholar
  107. Reinking J, Härting A, Bastos L (2012) Determination of sea surface height from moving ships with dynamic corrections. J Geod Sci 2:172–187.  https://doi.org/10.2478/v10156-011-0038-3 CrossRefGoogle Scholar
  108. Rietbroek R, Brunnabend SE, Kusche J, Schröter J, Dahle C (2016) Revisiting the contemporary sea-level budget on global and regional scales. Proc Natl Acad Sci 113:1504–1509.  https://doi.org/10.1073/pnas.1519132113 CrossRefGoogle Scholar
  109. Riva REM, Bamber JL, Lavallée DA, Wouters B (2010) Sea-level fingerprint of continental water and ice mass change from GRACE. Geophys Res Lett 37:L19605.  https://doi.org/10.1029/2010GL044770 CrossRefGoogle Scholar
  110. Rocken C, Kelecy TM, Born GH et al (1990) Measuring precise sea level from a buoy using the global positioning system. Geophys Res Lett 17:2145–2148.  https://doi.org/10.1029/GL017i012p02145 CrossRefGoogle Scholar
  111. Rudnick DL, Zaba KD, Todd RE, Davis RE (2017) A climatology of the California Current System from a network of underwater gliders. Prog Oceanogr 154:64–106.  https://doi.org/10.1016/j.pocean.2017.03.002 CrossRefGoogle Scholar
  112. Santamaría-Gómez A, Watson C (2017) Remote leveling of tide gauges using GNSS reflectometry: case study at Spring Bay, Australia. GPS Solut 21(2):451–459.  https://doi.org/10.1007/s10291-016-0537-x CrossRefGoogle Scholar
  113. Santamaría-Gómez A, Gravelle M, Dangendorf S, Marcos M, Spada G, Wöppelmann G (2017) Uncertainty of the 20th century sea-level rise due to vertical land motion errors. Earth Planet Sci Lett 473:24–32CrossRefGoogle Scholar
  114. Sasagawa G, Cook MJ, Zumberge MA (2016) Drift-corrected seafloor pressure observations of vertical deformation at Axial Seamount 2013–2014. Earth Space Sci 3:381–385.  https://doi.org/10.1002/2016EA000190 CrossRefGoogle Scholar
  115. Save H, Bettadpur S, Tapley BD (2016) High resolution CSR GRACE RL05 mascons. J Geophys Res Solid Earth 121:7547–7569.  https://doi.org/10.1002/2016JB013007 CrossRefGoogle Scholar
  116. Senechal N, Abadie S, Ardhuin F, Bujan S, Capo S, Certain R, Coco G, Gallagher E, Garlan T, Masselink G, MacMahan J, Michallet H, Pedreros R, Reniers A, Rey V, Ruessink B, Russell P, Turner I (2011a) The ECORS-Truc Vert 2008 field experiment: extreme storm conditions over a three-dimensional morphology system in a macro-tidal environment. Ocean Dyn 61:2073–2098.  https://doi.org/10.1007/s10236-011-0472-x CrossRefGoogle Scholar
  117. Senechal N, Coco G, Bryan KR, Holman RA (2011b) Wave runup during extreme storm conditions. J Geophys Res 116:C07032.  https://doi.org/10.1029/2010JC006819 CrossRefGoogle Scholar
  118. Sheremet A, Staples T, Ardhuin F, Suanez S, Fichaut B (2014) Observations of large infragravity wave runup at Banneg Island, France. Geophys Res Lett 41(3):976–982CrossRefGoogle Scholar
  119. Spencer R, Foden PR, McGarry C, Harrison AJ, Vassie JM, Baker TF, Smithson MJ, Harangozo SA, Woodworth PL (1993) The ACCLAIM programme in the South Atlantic and southern oceans. Int Hydrographic Rev 70(1):7–21Google Scholar
  120. Stephens S, Coco G, Bryan KR (2011) Numerical simulations of wave setup over barred beach profiles: implications for predictability. J Waterw Port Coast Ocean Eng.  https://doi.org/10.1061/(asce)ww.1943-5460.0000076 CrossRefGoogle Scholar
  121. Stockdon HF, Holman RA, Howd PA, Sallenger AH (2006) Empirical parameterization of setup, swash, and runup. Coast Eng 53:573–588.  https://doi.org/10.1016/j.coastaleng.2005.12.005 CrossRefGoogle Scholar
  122. Talke SA, Kemp AC, Woodruff J (2018) Relative sea level, tides, and extreme water levels in Boston harbor from 1825 to 2018. J Geophys Res 123:3895–3914.  https://doi.org/10.1029/2017JC013645 CrossRefGoogle Scholar
  123. Testut L, Wöppelmann G, Simon B, Téchiné P (2006) The sea level at Port-aux-Français, Kerguelen Island, from 1949 to the present. Ocean Dyn 56:464–472.  https://doi.org/10.1007/s10236-005-0056-8 CrossRefGoogle Scholar
  124. Tregoning P, Lambeck K, Ramillien G (2008) GRACE estimates of sea surface height anomalies in the Gulf of Carpentaria. Aust Earth Planet Sci Lett 271:241–244CrossRefGoogle Scholar
  125. Vignudelli S, Benveniste J, Birol F, FuLL, Picot N (in review) Satellite altimetry measurements of sea level in the coastal zone. Surv GeophysGoogle Scholar
  126. Wahr J, Molenaar M, Bryan F (1998) Time-variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103:30205–30229CrossRefGoogle Scholar
  127. Watkins MM, Wiese DN, Yuan D-N, Boening C, Landerer FW (2015) Improved methods for observing Earth’s time variable mass distribution with GRACE. JGR Solid Earth 120:2648–2671.  https://doi.org/10.1002/2014JB011547 CrossRefGoogle Scholar
  128. Watson C, Coleman R, White N et al (2003) Absolute calibration of TOPEX/Poseidon and Jason-1 using GPS buoys in bass strait, Australia special issue: Jason-1 calibration/validation. Mar Geod 26:285–304.  https://doi.org/10.1080/714044522 CrossRefGoogle Scholar
  129. Watson C, Coleman R, Handsworth R (2008) Coastal tide gauge calibration: a case study at Macquarie Island using GPS buoy techniques. J Coast Res 24:1071–1079.  https://doi.org/10.2112/07-0844.1 CrossRefGoogle Scholar
  130. Watts DR, Kontoyiannis H (1990) Deep-ocean bottom pressure measurement: drift removal and performance. J Atmos Ocean Technol 7:296–306.  https://doi.org/10.1175/1520-0426 CrossRefGoogle Scholar
  131. Weissman DE, Morey S, Bourassa M (2017) Studies of the effects of rain on the performance of the SMAP radiometer surface salinity estimates and applications to remote sensing of river plumes. In: IEEE international geoscience and remote sensing symposium (IGARSS), Fort Worth, TX, pp 1491–1494.  https://doi.org/10.1109/igarss.2017.8127250
  132. Wiese DN, Landerer FW, Watkins MM (2016) Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Water Resour Res 52:7490–7502CrossRefGoogle Scholar
  133. Willis JK, Chambers DP, Nerem RS (2008) Assessing the globally averaged sea level budget on seasonal to interannual time scales. J Geophys Res 113:C06015.  https://doi.org/10.1029/2007JC004517 CrossRefGoogle Scholar
  134. Woodworth PL, Blackman DL (2002) Changes in extreme high waters at Liverpool since 1768. Int J Climatol 22:697–714.  https://doi.org/10.1002/joc.761 CrossRefGoogle Scholar
  135. Woodworth PL, Pugh DT, Bingley RM (2010) Long-term and recent changes in sea level in the Falkland Islands. J Geophys Res 115:C09025.  https://doi.org/10.1029/2010JC006113 CrossRefGoogle Scholar
  136. Woodworth PL, Gravelle M, Marcos M, Woppelmann G, Hughes CW (2015) The status of measurement of the Mediterranean mean dynamic topography by geodetic techniques. J Geod 89:811–827.  https://doi.org/10.1007/s00190-015-0817-1 CrossRefGoogle Scholar
  137. Woodworth PL, Hunter JR, Marcos M, Caldwell P, Menendez M, Haigh I (2017) Towards a global higher-frequency sea level dataset. Geosci Data J 3:50–59.  https://doi.org/10.1002/gdj3.42 CrossRefGoogle Scholar
  138. Woodworth PL, Melet A, Marcos M, Ray RD, Wöppelmann G, Sasaki YN, Cirano M, Hibbert A, Huthnance JM, Monserrat S, Merrifield MA (in review) Forcing factors causing sea level changes at the coast. Surv GeophysGoogle Scholar
  139. Wöppelmann G, Marcos M (2016) Vertical land motion as a key to understanding sea level change and variability. Rev Geophys 54:64–92.  https://doi.org/10.1002/2015RG000502 CrossRefGoogle Scholar
  140. Wöppelmann G, Pouvreau N, Simon B (2006) Brest sea level record: a time series construction back to the early eighteenth century. Ocean Dyn 56:487–497.  https://doi.org/10.1007/s10236-005-0044-z CrossRefGoogle Scholar
  141. Wöppelmann G, Martín Míguez B, Bouin M-N, Altamimi Z (2007) Geocentric sea-level trend estimates from GPS analyses at relevant tide gauges world-wide. Glob Planet Change 57:396–406CrossRefGoogle Scholar
  142. Wöppelmann G, Marcos M, Coulomb A, Martín Míguez B, Bonnetain P, Boucher C, Gravelle M, Simon B, Tiphaneau P (2014) Rescue of the historical sea level record of Marseille (France) from 1885 to 1988 and its extension back to 1849–1851. J Geod 88:869–885.  https://doi.org/10.1007/s00190-014-0728-6 CrossRefGoogle Scholar
  143. Wouters B, Chambers DP (2010) Analysis of seasonal ocean bottom pressure variability in the Gulf of Thailand from GRACE. Glob Planet Change.  https://doi.org/10.1016/j.gloplacha.2010.08.002 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Marta Marcos
    • 1
    • 2
    Email author
  • Guy Wöppelmann
    • 3
  • Andrew Matthews
    • 4
  • Rui M. Ponte
    • 5
  • Florence Birol
    • 6
  • Fabrice Ardhuin
    • 7
  • Giovanni Coco
    • 8
  • Alvaro Santamaría-Gómez
    • 9
  • Valerie Ballu
    • 3
  • Laurent Testut
    • 3
  • Don Chambers
    • 10
  • Justin E. Stopa
    • 11
  1. 1.IMEDEA(UIB-CSIC)EsporlesSpain
  2. 2.Department of PhysicsUniversity of the Balearic IslandsPalmaSpain
  3. 3.LIENSsUniversité de La RochelleLa RochelleFrance
  4. 4.National Oceanography CentreLiverpoolUK
  5. 5.Atmospheric and Environmental Research, Inc.LexingtonUSA
  6. 6.LEGOSUniversity of Toulouse, IRD, CNES, CNRSToulouseFrancia
  7. 7.CNRS, IRD, Ifremer, Laboratoire d’Océanographie Physique et Spatiale (LOPS), IUEMUniv. BrestPlouzanéFrancia
  8. 8.Faculty of Science, School of EnvironmentUniversity of AucklandAucklandNew Zealand
  9. 9.GET, Observatoire Midi–Pyrénées, CNRS, IRD, UPSUniversité de ToulouseToulouseFrance
  10. 10.College of Marine ScienceUniversity of South FloridaSt. PetersburgUSA
  11. 11.University of HawaiiHonoluluUSA

Personalised recommendations