High-Resolution Characterization of Near-Surface Structures by Surface-Wave Inversions: From Dispersion Curve to Full Waveform

  • Yudi PanEmail author
  • Lingli Gao
  • Thomas Bohlen


Surface waves are widely used in near-surface geophysics and provide a noninvasive way to determine near-surface structures. By extracting and inverting dispersion curves to obtain local 1D S-wave velocity profiles, multichannel analysis of surface waves (MASW) has been proven as an efficient way to analyze shallow-seismic surface waves. By directly inverting the observed waveforms, full-waveform inversion (FWI) provides another feasible way to use surface waves in reconstructing near-surface structures. This paper provides a state of the art review of MASW and shallow-seismic FWI and a comparison of both methods. A two-parameter numerical test is performed to analyze the nonlinearity of MASW and FWI, including the classical, the multiscale, the envelope-based, and the amplitude-spectrum-based FWI approaches. A checkerboard model is used to compare the resolution of MASW and FWI. These numerical examples show that classical FWI has the highest nonlinearity and resolution among these methods, while MASW has the lowest nonlinearity and resolution. The modified FWI approaches have an intermediate nonlinearity and resolution between classical FWI and MASW. These features suggest that a sequential application of MASW and FWI could provide an efficient hierarchical way to delineate near-surface structures. We apply the sequential-inversion strategy to two field data sets acquired in Olathe, Kansas, USA, and Rheinstetten, Germany, respectively. We build a 1D initial model by using MASW and then apply the multiscale FWI to the data. High-resolution 2D S-wave velocity images are obtained in both cases, whose reliabilities are proven by borehole data and a GPR profile, respectively. It demonstrates the effectiveness of combining MASW and FWI for high-resolution imaging of near-surface structures.


MASW FWI Surface waves Shallow seismic Dispersion curve Shear-wave velocity 



The authors would like to thank Dr. Thomas Hertweck for an internal review and Prof. Jianghai Xia for providing the first field data set. The authors also appropriate the editor Prof. Michael J. Rycroft and two anonymous reviewers for their helpful and constructive comments. We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) through CRC 1173.


  1. Aki K, Richards PG (2002) Quantitative seismology. University Science Books, HerndonGoogle Scholar
  2. Aleardi M, Tognarelli A, Mazzotti A (2016) Characterisation of shallow marine sediments using high-resolution velocity analysis and genetic-algorithm-driven 1D elastic full-waveform inversion. Near Surf Geophys 14(5):449–460CrossRefGoogle Scholar
  3. Amrouche M, Yamanaka H (2015) Two-dimensional shallow soil profiling using time-domain waveform inversion. Geophysics 80(1):EN27–EN41CrossRefGoogle Scholar
  4. Askari R, Hejazi SH (2015) Estimation of surface-wave group velocity using slant stack in the generalized S-transform domain surface-wave group velocity estimation. Geophysics 80(4):EN83–EN92CrossRefGoogle Scholar
  5. Behura J, Snieder R (2013) Virtual real source: source signature estimation using seismic interferometry. Geophysics 78(5):Q57–Q68CrossRefGoogle Scholar
  6. Bergamo P, Socco LV (2014) Detection of sharp lateral discontinuities through the analysis of surface-wave propagation. Geophysics 79(4):EN77–EN90CrossRefGoogle Scholar
  7. Bergamo P, Boiero D, Socco LV (2012) Retrieving 2D structures from surface-wave data by means of space-varying spatial windowing. Geophysics 77(4):EN39–EN51CrossRefGoogle Scholar
  8. Boaga J, Vignoli G, Cassiani G (2011) Shear wave profiles from surface wave inversion: the impact of uncertainty on seismic site response analysis. J Geophys Eng 8(2):162CrossRefGoogle Scholar
  9. Boaga J, Cassiani G, Strobbia CL, Vignoli G (2013) Mode misidentification in Rayleigh waves: ellipticity as a cause and a cure. Geophysics 78(4):EN17–EN28CrossRefGoogle Scholar
  10. Bohlen T (2002) Parallel 3-D viscoelastic finite difference seismic modelling. Comput Geosci 28(8):887–899CrossRefGoogle Scholar
  11. Bohlen T, Kugler S, Klein G, Theilen F (2004) 1.5D inversion of lateral variation of Scholte wave dispersion. Geophysics 69(2):330–344CrossRefGoogle Scholar
  12. Boiero D, Socco LV (2010) Retrieving lateral variations from surface wave dispersion curves. Geophys Prospect 58(6):977–996Google Scholar
  13. Boiero D, Bergamo P, Bruno Rege R, Socco LV (2011) Estimating surface-wave dispersion curves from 3D seismic acquisition schemes: part 11D models. Geophysics 76(6):G85–G93CrossRefGoogle Scholar
  14. Borisov D, Modrak R, Gao F, Tromp J (2017) 3D elastic full-waveform inversion of surface waves in the presence of irregular topography using an envelope-based misfit function. Geophysics 83(1):1–45CrossRefGoogle Scholar
  15. Bozdağ E, Trampert J, Tromp J (2011) Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements. Geophys J Int 185(2):845–870CrossRefGoogle Scholar
  16. Bretaudeau F, Brossier R, Leparoux D, Abraham O, Virieux J (2013) 2D elastic full-waveform imaging of the near-surface: application to synthetic and physical modelling data sets. Near Surf Geophys 11(3):307–316CrossRefGoogle Scholar
  17. Brossier R, Operto S, Virieux J (2009) Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion. Geophysics 74(6):WCC105–WCC118CrossRefGoogle Scholar
  18. Brossier R, Operto S, Virieux J (2010) Which data residual norm for robust elastic frequency-domain full waveform inversion? Geophysics 75(3):R37–R46CrossRefGoogle Scholar
  19. Bunks C, Saleck FM, Zaleski S, Chavent G (1995) Multiscale seismic waveform inversion. Geophysics 60(5):1457–1473CrossRefGoogle Scholar
  20. Cercato M (2009) Addressing non-uniqueness in linearized multichannel surface wave inversion. Geophys Prospect 57(1):27–47CrossRefGoogle Scholar
  21. Chai HY, Phoon KK, Goh SH, Wei CF (2012) Some theoretical and numerical observations on scattering of Rayleigh waves in media containing shallow rectangular cavities. J Appl Geophys 83:107–119CrossRefGoogle Scholar
  22. Chen X (1993) A systematic and efficient method of computing normal modes for multilayered half-space. Geophys J Int 115(2):391–409CrossRefGoogle Scholar
  23. Dal Moro G, Moura RMM, Moustafa SS (2015) Multi-component joint analysis of surface waves. J Appl Geophys 119:128–138CrossRefGoogle Scholar
  24. Dal Moro G, Moustafa SS, Al-Arifi NS (2018) Improved holistic analysis of Rayleigh waves for single-and multi-offset data: joint inversion of Rayleigh-wave particle motion and vertical-and radial-component velocity spectra. Pure Appl Geophys 175(1):67–88CrossRefGoogle Scholar
  25. De Nil D (2005) Characteristics of surface waves in media with significant vertical variations in elasto-dynamic properties. J Environ Eng Geophys 10(3):263–274CrossRefGoogle Scholar
  26. Di Fiore V, Cavuoto G, Tarallo D, Punzo M, Evangelista L (2016) Multichannel analysis of surface waves and down-hole tests in the archeological Palatine Hill area (Rome, Italy): evaluation and influence of 2D effects on the shear wave velocity. Surv Geophys 37(3):625–642CrossRefGoogle Scholar
  27. Dokter E, Köhn D, Wilken D, Nil D, Rabbel W (2017) Full-waveform inversion of SH- and Love-wave data in near-surface prospecting. Geophys Prospect 65:216–236CrossRefGoogle Scholar
  28. Dou S, Ajo-Franklin JB (2014) Full-wavefield inversion of surface waves for mapping embedded low-velocity zones in permafrost. Geophysics 79(6):EN107–EN124CrossRefGoogle Scholar
  29. Fichtner A, Kennett BL, Igel H, Bunge HP (2008) Theoretical background for continental- and global-scale full-waveform inversion in the time-frequency domain. Geophys J Int 175(2):665–685CrossRefGoogle Scholar
  30. Forbriger T (2003) Inversion of shallow-seismic wavefields: I. Wavefield transformation. Geophys J Int 153(3):719–734CrossRefGoogle Scholar
  31. Forbriger T, Groos L, Schäfer M (2014) Line-source simulation for shallow-seismic data. Part 1: theoretical background. Geophys J Int 198(3):1387–1404CrossRefGoogle Scholar
  32. Foti S, Comina C, Boiero D, Socco L (2009) Non-uniqueness in surface-wave inversion and consequences on seismic site response analyses. Soil Dyn Earthq Eng 29(6):982–993CrossRefGoogle Scholar
  33. Foti S, Parolai S, Albarello D, Picozzi M (2011) Application of surface-wave methods for seismic site characterization. Surv Geophys 32(6):777–825CrossRefGoogle Scholar
  34. Foti S, Lai CG, Rix GJ, Strobbia C (2014) Surface wave methods for near-surface site characterization. CRC Press, Boca RatonCrossRefGoogle Scholar
  35. Gao L, Pan Y (2016) Acquisition and processing pitfall with clipped traces in surface-wave analysis. J Appl Geophys 125:1–6CrossRefGoogle Scholar
  36. Gao L, Pan Y (2018) Source signature estimation from multimode surface waves via mode-separated virtual real source method. Geophys J Int 213(2):1177–1186CrossRefGoogle Scholar
  37. Gao L, Xia J, Pan Y (2014) Misidentification caused by leaky surface wave in high-frequency surface wave method. Geophys J Int 199(3):1452–1462CrossRefGoogle Scholar
  38. Gao L, Xia J, Pan Y, Xu Y (2016) Reason and condition for mode kissing in MASW method. Pure Appl Geophys 173(5):1627–1638CrossRefGoogle Scholar
  39. Garofalo F, Foti S, Hollender F, Bard P, Cornou C, Cox BR, Ohrnberger M, Sicilia D, Asten M, Di Giulio G et al (2016) Interpacific project: comparison of invasive and non-invasive methods for seismic site characterization. Part I: intra-comparison of surface wave methods. Soil Dyn Earthq Eng 82:222–240CrossRefGoogle Scholar
  40. Gélis C, Virieux J, Grandjean G (2007) Two-dimensional elastic full waveform inversion using Born and Rytov formulations in the frequency domain. Geophys J Int 168(2):605–633CrossRefGoogle Scholar
  41. Gilbert JC, Nocedal J (1992) Global convergence properties of conjugate gradient methods for optimization. SIAM J Optim 2(1):21–42CrossRefGoogle Scholar
  42. Groos L, Schäfer M, Forbriger T, Bohlen T (2014) The role of attenuation in 2D full-waveform inversion of shallow-seismic body and Rayleigh waves. Geophysics 79(6):R247–R261CrossRefGoogle Scholar
  43. Groos L, Schäfer M, Forbriger T, Bohlen T (2017) Application of a complete workflow for 2D elastic full-waveform inversion to recorded shallow-seismic Rayleigh waves. Geophysics 82(2):R109–R117CrossRefGoogle Scholar
  44. Haskell NA (1953) The dispersion of surface waves on multilayered media. Bull Seismol Soc Am 43(1):17–34Google Scholar
  45. Hayashi K, Suzuki H (2004) CMP cross-correlation analysis of multi-channel surface-wave data. Explor Geophys 35:7–13CrossRefGoogle Scholar
  46. Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. J Res Natl Bur Stand 49(6):409–436CrossRefGoogle Scholar
  47. Ikeda T, Tsuji T (2015) Advanced surface-wave analysis for 3D ocean bottom cable data to detect localized heterogeneity in shallow geological formation of a CO2 storage site. Int J Greenh Gas Control 39:107–118CrossRefGoogle Scholar
  48. Ikeda T, Tsuji T, Matsuoka T (2013) Window-controlled CMP crosscorrelation analysis for surface waves in laterally heterogeneous media. Geophysics 78(6):EN95–EN105CrossRefGoogle Scholar
  49. Ikeda T, Matsuoka T, Tsuji T, Nakayama T (2014) Characteristics of the horizontal component of Rayleigh waves in multimode analysis of surface waves. Geophysics 80(1):EN1–EN11CrossRefGoogle Scholar
  50. Ivanov J, Miller RD, Xia J, Steeples D, Park CB (2006) Joint analysis of refractions with surface waves: an inverse solution to the refraction-traveltime problem. Geophysics 71(6):R131–R138CrossRefGoogle Scholar
  51. Kallivokas L, Fathi A, Kucukcoban S, Stokoe K II, Bielak J, Ghattas O (2013) Site characterization using full waveform inversion. Soil Dyn Earthq Eng 47:62–82CrossRefGoogle Scholar
  52. Ke G, Dong H, Kristensen Å, Thompson M (2011) Modified Thomson–Haskell matrix methods for surface-wave dispersion-curve calculation and their accelerated root-searching schemes. Bull Seismol Soc Am 101(4):1692–1703CrossRefGoogle Scholar
  53. Kennett B (1974) Reflections, rays, and reverberations. Bull Seismol Soc Am 64(6):1685–1696Google Scholar
  54. Knopoff L (1964) A matrix method for elastic wave problems. Bull Seismol Soc Am 54(1):431–438Google Scholar
  55. Köhn D, Meier T, Fehr M, Nil D, Auras M (2016) Application of 2D elastic Rayleigh waveform inversion to ultrasonic laboratory and field data. Near Surf Geophys 14(5):461–476CrossRefGoogle Scholar
  56. Kumar J, Naskar T (2017) Resolving phase wrapping by using sliding transform for generation of dispersion curves. Geophysics 82(3):V127–V136CrossRefGoogle Scholar
  57. Lin CP, Chang TS (2004) Multi-station analysis of surface wave dispersion. Soil Dyn Earthq Eng 24(11):877–886CrossRefGoogle Scholar
  58. Lin CP, Lin CH, Chien CJ (2017) Dispersion analysis of surface wave testing: SASW versus MASW. J Appl Geophys 143:223–230CrossRefGoogle Scholar
  59. Liu Y, Teng J, Xu T, Badal J, Liu Q, Zhou B (2017) Effects of conjugate gradient methods and step-length formulas on the multiscale full waveform inversion in time domain: numerical experiments. Pure Appl Geophys 174(5):1983–2006CrossRefGoogle Scholar
  60. Lu L, Wang C, Zhang B (2007) Inversion of multimode Rayleigh waves in the presence of a low-velocity layer: numerical and laboratory study. Geophys J Int 168(3):1235–1246CrossRefGoogle Scholar
  61. Luo Y, Xia J, Miller R, Xu Y, Liu J, Liu Q (2008) Rayleigh-wave dispersive energy imaging using a high-resolution linear Radon transform. Pure Appl Geophys 165(5):903–922CrossRefGoogle Scholar
  62. Luo Y, Xia J, Liu J, Xu Y, Liu Q (2009) Research on the middle-of-receiver-spread assumption of the MASW method. Soil Dyn Earthq Eng 29(1):71–79CrossRefGoogle Scholar
  63. Maraschini M, Foti S (2010) A monte carlo multimodal inversion of surface waves. Geophys J Int 182(3):1557–1566CrossRefGoogle Scholar
  64. Masoni I, Brossier R, Virieux J, Boelle J (2013a) Alternative misfit functions for FWI applied to surface waves. In: 75th EAGE conference and exhibition incorporating SPE EUROPEC 2013Google Scholar
  65. Masoni I, Valensi R, Brossier R, Virieux J, Boelle J, Leparoux D, Cote P (2013b) Toward a better full waveform inversion of surface waves. In: 19th European meeting of environmental and engineering geophysics, EAGE, expanded abstracts, vol 19200Google Scholar
  66. Maurer H, Curtis A, Boerner DE (2010) Recent advances in optimized geophysical survey design. Geophysics 75(5):75A177–75A194CrossRefGoogle Scholar
  67. Menke W (2017) The uniqueness of single data function, multiple model functions, inverse problems including the Rayleigh wave dispersion problem. Pure Appl Geophys 174(4):1699–1710CrossRefGoogle Scholar
  68. Métivier L, Brossier R (2016) The SEISCOPE optimization toolbox: a large-scale nonlinear optimization library based on reverse communicationthe seiscope optimization toolbox. Geophysics 81(2):F1–F15CrossRefGoogle Scholar
  69. Métivier L, Brossier R, Virieux J, Operto S (2013) Full waveform inversion and the truncated Newton method. SIAM J Sci Comput 35(2):B401–B437CrossRefGoogle Scholar
  70. Mi B, Xia J, Shen C, Wang L, Hu Y, Cheng F (2017) Horizontal resolution of multichannel analysis of surface waves. Geophysics 82(3):EN51–EN66CrossRefGoogle Scholar
  71. Mi B, Xia J, Shen C, Wang L (2018) Dispersion energy analysis of Rayleigh and Love waves in the presence of low-velocity layers in near-surface seismic surveys. Surv Geophys 39(2):271–288CrossRefGoogle Scholar
  72. Miller R, Xia J, Park C, Ivanov J (1999) Multichannel analysis of surface waves to map bedrock. Lead Edge 18(12):1392–1396CrossRefGoogle Scholar
  73. Mun S, Bao Y, Li H (2015) Generation of Rayleigh-wave dispersion images from multichannel seismic data using sparse signal reconstruction. Geophys J Int 203(2):818–827CrossRefGoogle Scholar
  74. Nazarian S, Stokoe I, Kenneth H, Hudson W (1983) Use of spectral analysis of surface waves method for determination of moduli and thicknesses of pavement systems. Transp Res Rec 930:38–45Google Scholar
  75. Nguyen TD, Tran KT, McVay M (2016) Evaluation of unknown foundations using surface-based full waveform tomography. J Bridge Eng 21(5):04016013CrossRefGoogle Scholar
  76. Nocedal J, Wright S (2006) Numerical optimization. Springer, BerlinGoogle Scholar
  77. Nuber A, Manukyan E, Maurer H (2017) Optimizing measurement geometry for seismic near-surface full waveform inversion. Geophys J Int 210(3):1909–1921CrossRefGoogle Scholar
  78. Pan Y, Xia J, Gao L, Shen C, Zeng C (2013a) Calculation of Rayleigh-wave phase velocities due to models with a high-velocity surface layer. J Appl Geophys 96:1–6CrossRefGoogle Scholar
  79. Pan Y, Xia J, Zeng C (2013b) Verification of correctness of using real part of complex root as Rayleigh-wave phase velocity with synthetic data. J Appl Geophys 88:94–100CrossRefGoogle Scholar
  80. Pan Y, Xia J, Xu Y, Gao L (2016a) Multichannel analysis of Love waves in a 3D seismic acquisition system. Geophysics 81(5):EN67–EN74CrossRefGoogle Scholar
  81. Pan Y, Xia J, Xu Y, Gao L, Xu Z (2016b) Love-wave waveform inversion for shallow shear-wave velocity using a conjugate gradient algorithm. Geophysics 81(1):R1–R14CrossRefGoogle Scholar
  82. Pan Y, Gao L, Bohlen T (2017) Sequential phase-velocity and waveform inversion of shallow-seismic surface waves—a field example for bedrock mapping. In: 23rd European meeting of environmental and engineering geophysicsGoogle Scholar
  83. Pan Y, Gao L, Bohlen T (2018a) Time-domain full-waveform inversion of Rayleigh and Love waves in presence of free-surface topography. J Appl Geophys 152:77–85CrossRefGoogle Scholar
  84. Pan Y, Schaneng S, Steinweg T, Bohlen T (2018b) Estimating S-wave velocities from 3D 9-component shallow seismic data using local Rayleigh-wave dispersion curves—a field study. J Appl Geophys 159:532–539CrossRefGoogle Scholar
  85. Park CB, Miller RD, Xia J, et al (1998) Imaging dispersion curves of surface waves on multi-channel record. In: 1998 SEG annual meeting, society of exploration geophysicistsGoogle Scholar
  86. Park CB, Miller RD, Xia J (1999) Multichannel analysis of surface waves. Geophysics 64(3):800–808CrossRefGoogle Scholar
  87. Parolai S (2009) Determination of dispersive phase velocities by complex seismic trace analysis of surface waves (CASW). Soil Dyn Earthq Eng 29(3):517–524CrossRefGoogle Scholar
  88. Pei D, Louie JN, Pullammanappallil SK (2008) Improvements on computation of phase velocities of Rayleigh waves based on the generalized R/T coefficient method. Bull Seismol Soc Am 98(1):280–287CrossRefGoogle Scholar
  89. Pérez Solano C, Donno D, Chauris H (2014) Alternative waveform inversion for surface wave analysis in 2-D media. Geophys J Int 198(3):1359–1372CrossRefGoogle Scholar
  90. Piatti C, Socco L, Boiero D, Foti S (2013) Constrained 1D joint inversion of seismic surface waves and P-refraction traveltimes. Geophys Prospect 61(1):77–93CrossRefGoogle Scholar
  91. Plessix R (2006) A review of the adjoint-state method for computing the gradient of a functional with geophysical applications. Geophys J Int 167(2):495–503CrossRefGoogle Scholar
  92. Plessix R, Mulder W (2004) Frequency-domain finite-difference amplitude-preserving migration. Geophys J Int 157(1):957–987Google Scholar
  93. Renalier F, Jongmans D, Savvaidis A, Wathelet M, Endrun B, Cornou C (2010) Influence of parameterization on inversion of surface wave dispersion curves and definition of an inversion strategy for sites with a strong versus contrast. Geophysics 75(6):B197–B209CrossRefGoogle Scholar
  94. Romdhane A, Grandjean G, Brossier R, Rejiba F, Operto S, Virieux J (2011) Shallow-structure characterization by 2D elastic full waveform inversion. Geophysics 76(3):R81–R93CrossRefGoogle Scholar
  95. Ryden N, Park CB (2006) Fast simulated annealing inversion of surface waves on pavement using phase-velocity spectra. Geophysics 71(4):R49–R58CrossRefGoogle Scholar
  96. Schwab F, Knopoff L (1970) Surface-wave dispersion computations. Bull Seismol Soc Am 61:321–344Google Scholar
  97. Shen C, Wang A, Wang L, Xu Z, Cheng F (2015) Resolution equivalence of dispersion-imaging methods for noise-free high-frequency surface-wave data. J Appl Geophys 122:167–171CrossRefGoogle Scholar
  98. Sloan SD, Peterie SL, Miller RD, Ivanov J, Schwenk JT, McKenna JR (2015) Detecting clandestine tunnels using near-surface seismic techniques. Geophysics 80(5):EN127–EN135CrossRefGoogle Scholar
  99. Socco L, Boiero D (2008) Improved monte carlo inversion of surface wave data. Geophys Prospect 56(3):357–371CrossRefGoogle Scholar
  100. Socco L, Boiero D, Foti S, Wisn R (2009) Laterally constrained inversion of ground roll from seismic reflection records. Geophysics 74(6):G35–G45CrossRefGoogle Scholar
  101. Socco L, Foti S, Boiero D (2010) Surface wave analysis for building near surface velocity models: established approaches and new perspectives. Geophysics 75(5):A83–A102CrossRefGoogle Scholar
  102. Song X, Tang L, Lv X, Fang H, Gu H (2012) Application of particle swarm optimization to interpret Rayleigh wave dispersion curves. J Appl Geophys 84:1–13CrossRefGoogle Scholar
  103. Strobbia C, Foti S (2006) Multi-offset phase analysis of surface wave data (MOPA). J Appl Geophys 59(4):300–313CrossRefGoogle Scholar
  104. Strobbia C, Laake A, Vermeer P, Glushchenko A (2011) Surface waves: use them then lose them. surface-wave analysis, inversion and attenuation in land reflection seismic surveying. Near Surf Geophys 9(6):503–514CrossRefGoogle Scholar
  105. Tarantola A (1986) A strategy for nonlinear elastic inversion of seismic reflection data. Geophysics 51(10):1893–1903CrossRefGoogle Scholar
  106. Tarantola A (1988) Theoretical background for the inversion of seismic waveforms including elasticity and attenuation. Pure Appl Geophys 128(1–2):365–399CrossRefGoogle Scholar
  107. Tarantola A (2005) Inverse problem theory and methods for model parameter estimation, vol 89. SIAM, BangkokCrossRefGoogle Scholar
  108. Thomson WT (1950) Transmission of elastic waves through a stratified solid medium. J Appl Phys 21(2):89–93CrossRefGoogle Scholar
  109. Tran K, McVay M, Faraone M, Horhota D (2013) Sinkhole detection using 2D full seismic waveform tomography. Geophysics 78(5):R175–R183CrossRefGoogle Scholar
  110. Tran KT, Sperry J (2018) Application of 2-D full waveform tomography on land-streamer data for assessment of roadway subsidence. Geophysics 83(3):1–42CrossRefGoogle Scholar
  111. Tsuji T, Johansen TA, Ruud BO, Ikeda T, Matsuoka T (2012) Surface-wave analysis for identifying unfrozen zones in subglacial sediments S-wave velocity in subglacial sediment. Geophysics 77(3):EN17–EN27CrossRefGoogle Scholar
  112. Verachtert R, Lombaert G, Degrande G (2017) Multimodal determination of Rayleigh dispersion and attenuation curves using the circle fit method. Geophys J Int 212(3):2143–2158CrossRefGoogle Scholar
  113. Vignoli G, Cassiani G (2010) Identification of lateral discontinuities via multi-offset phase analysis of surface wave data. Geophys Prospect 58(3):389–413CrossRefGoogle Scholar
  114. Vignoli G, Strobbia C, Cassiani G, Vermeer P (2011) Statistical multioffset phase analysis for surface-wave processing in laterally varying media. Geophysics 76(2):U1–U11CrossRefGoogle Scholar
  115. Virieux J (1986) P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 51(4):889–901CrossRefGoogle Scholar
  116. Virieux J, Operto S (2009) An overview of full-waveform inversion in exploration geophysics. Geophysics 74(6):WCC1–WCC26CrossRefGoogle Scholar
  117. Wang L, Xu Y, Xia J, Luo Y (2015) Effect of near-surface topography on high-frequency Rayleigh-wave propagation. J Appl Geophys 116:93–103CrossRefGoogle Scholar
  118. Watson T (1970) A note on fast computation of Rayleigh wave dispersion in the multilayered elastic half-space. Bull Seismol Soc Am 60(1):161–166Google Scholar
  119. Wu RS, Luo J, Wu B (2014) Seismic envelope inversion and modulation signal model. Geophysics 79(3):WA13–WA24CrossRefGoogle Scholar
  120. Xia J (2014) Estimation of near-surface shear-wave velocities and quality factors using multichannel analysis of surface-wave methods. J Appl Geophys 103:140–151CrossRefGoogle Scholar
  121. Xia J, Miller R, Park C (1999) Estimation of near-surface shear-wave velocity by inversion of Rayleigh wave. Geophysics 64(4):691–700CrossRefGoogle Scholar
  122. Xia J, Miller RD, Park CB, Tian G (2003) Inversion of high frequency surface waves with fundamental and higher modes. J Appl Geophys 52(1):45–57CrossRefGoogle Scholar
  123. Xia J, Xu Y, Miller RD (2007) Generating an image of dispersive energy by frequency decomposition and slant stacking. Pure Appl Geophys 164(5):941–956CrossRefGoogle Scholar
  124. Xia J, Xu Y, Miller RD, Zeng C (2010) A trade-off solution between model resolution and covariance in surface-wave inversion. Pure Appl Geophys 167(12):1537–1547CrossRefGoogle Scholar
  125. Xia J, Xu Y, Luo Y, Miller R, Cakir C, Zeng C (2012) Advantages of using multichannel analysis of Love waves (MALW) to estimate near-surface shear-wave velocity. Surv Geophys 33:841–860CrossRefGoogle Scholar
  126. Xing Z, Mazzotti A (2018) Two-grid genetic algorithm full waveform inversion of surface waves: two actual data examples. In: 80th EAGE conference and exhibition 2018Google Scholar
  127. Yamanaka H, Ishida H (1996) Application of genetic algorithms to an inversion of surface-wave dispersion data. Bull Seismol Soc Am 86(2):436–444Google Scholar
  128. Yuan YO, Simons FJ, Bozdağ E (2015) Multiscale adjoint waveform tomography for surface and body waves. Geophysics 80(5):R281–R302CrossRefGoogle Scholar
  129. Zeng C, Xia J, Miller R, Tsoflias GP (2011a) Feasibility of waveform inversion of Rayleigh waves for shallow shear-wave velocity using a genetic algorithm. J Appl Geophys 75:655–684CrossRefGoogle Scholar
  130. Zeng C, Xia J, Miller RD, Tsoflias GP (2011b) Application of the multiaxial perfectly matched layer (M-PML) to near-surface seismic modeling with Rayleigh waves. Geophysics 76(3):T43–T52CrossRefGoogle Scholar
  131. Zeng C, Xia J, Miller RD, Tsoflias GP, Wang Z (2012) Numerical investigation of MASW applications in presence of surface topography. J Appl Geophys 84:52–60CrossRefGoogle Scholar
  132. Zhang SX, Chan LS (2003) Possible effects of misidentified mode number on Rayleigh wave inversion. J Appl Geophys 53(1):17–29CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Geophysical InstituteKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Department of MathematicsKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations