Advertisement

Surveys in Geophysics

, Volume 39, Issue 6, pp 1069–1079 | Cite as

Improvement of Ground Penetrating Radar (GPR) Data Interpretability by an Enhanced Inverse Scattering Strategy

  • Raffaele Persico
  • Giovanni Ludeno
  • Francesco Soldovieri
  • Albéric De Coster
  • Sébastien Lambot
Article
  • 144 Downloads

Abstract

This paper is inserted into the framework of inverse scattering with application to Ground Penetrating Radar (GPR) data and is meant to provide a method helping to apply inverse scattering algorithms to electrically large investigation domains. In particular, we focus on the depth slices that are particularly important in application on cultural heritage and propose in relationship with the depth slices a strategy that we will call “shifting zoom” that is specifically a method to mitigate the effects of the limited view angle in the linear tomographic inversion applied to GPR data. In particular, this paper is an extended version of the contribution (Persico et al. in: Proceedings of Imeko international conference on metrology for archaeology and cultural heritage, Lecce, Italy, 2017a), published in the Proceedings of the conference metrology for archaeology 2017. We propose here a validation of the shifting zoom versus experimental data gathered in a controlled test site, and we will show the effect of the shifting zoom on depth slices achieved from these data after a linear inverse scattering processing has been applied for their focusing.

Keywords

GPR Depth slices Shifting zoom 

References

  1. Allred BJ, Redman D (2010) Location of agricultural drainage pipes and assessment of agricultural drainage pipe conditions using ground penetrating radar. J Environ Eng Geophys 15:119–134CrossRefGoogle Scholar
  2. Bertero M, Boccacci P (1998) Introduction to inverse problems in imaging. Institute of Physics Publishing, BristolCrossRefGoogle Scholar
  3. Bevan B (1991) The search for graves. Geophysics 56:1310–1319CrossRefGoogle Scholar
  4. Campana S, Piro S (2009) Seeing the unseen: geophysics and landscape archaeology. CRC Press, Boca RatonGoogle Scholar
  5. Caorsi S, Pastorino M (2000) Two-dimensional microwave imaging approach based on a genetic algorithm. IEEE Trans Antennas Propag 48(3):370–372CrossRefGoogle Scholar
  6. Chianese D, D’Emilio M, Di Salvia S, Lapenna V, Ragosta M, Rizzo E (2004) Magnetic mapping, ground penetrating radar surveys and magnetic susceptibility. Measurements for the study of archaeological site of Serra di Vaglio (southern Italy). J Archaeol Sci 31:633–643CrossRefGoogle Scholar
  7. Collin RE (2001) Foundations of microwave engineering, 2nd edn. Wiley, HobokenCrossRefGoogle Scholar
  8. Conyers LB (2004) Ground penetrating radar for archaeology. Alta Mira Press, Walnut CreekGoogle Scholar
  9. Conyers LB, Goodman D (1998) Ground penetrating radar: an introduction for archaeologists. AltaMira Press, Walnut CreekGoogle Scholar
  10. Daniels DJ (2004) Ground penetrating radar. IEEE, LondonCrossRefGoogle Scholar
  11. Gabellone F, Ferrario I, Giuri F, Limoncelli M (2010) Virtual Hierapolis: tra tecnicismo e realismo, in Arqueológica 2.0, II Congreso Internacional de Arqueología e Informática Gráfica, Patrimonio e Innovación, Sevilla, 16–19 Junio 2010, pp 279–284Google Scholar
  12. Gennarelli G, Catapano I, Soldovieri F, Persico R (2015) On the achievable imaging performance in full 3-D linear inverse scattering. IEEE Trans Antennas Propag 63(3):1150–1155CrossRefGoogle Scholar
  13. Goodman D, Nishimura Y, Rogers JD (1995) GPR time slices in archaeological prospection. Archaeol Prospect 2:85–89Google Scholar
  14. Hansen TB, Johansen PM (2000) Inversion scheme for ground penetrating radar that takes into account the planar air–soil interface. IEEE Trans Geosci Remote Sens 38(1):23–34CrossRefGoogle Scholar
  15. Kadioglu S, Kadioglu YK (2010) Picturing internal fractures of historical statues using ground penetrating radar method. Adv Geosci 24:23–34CrossRefGoogle Scholar
  16. Lambot S, André F (2014) Full-wave modeling of near-field radar data for planar layered media reconstruction. IEEE Trans Geosci Remote Sens 52:2295–2303CrossRefGoogle Scholar
  17. Leucci G, Greco F (2012) 3d electrical resistivity tomography to reconstruct archaeological features in the subsoil of the “spirito santo” church ruins at the site of occhiola’ (sicily, italy). Archaeology 1(1):1–6Google Scholar
  18. Linford NT, Linford PK (2004) Short report, ground penetrating radar survey over a Roman Building at Groudwell Ridge, Blunsdon St Andrew, Swindon, UK. Archaeol Prospect 11:49–55CrossRefGoogle Scholar
  19. Liseno A, Tartaglione F, Soldovieri F (2004) Shape reconstruction of 2d buried objects under a Kirchhoff approximation. IEEE Geosci Remote Sens Lett 1(2):118–121CrossRefGoogle Scholar
  20. Mertens L, Persico R, Matera L, Lambot S (2016) Smart automated detection of reflection hyperbolas in complex GPR images with no a priori knowledge on the medium. IEEE Trans Geosci Remote Sens 54(1):580–596CrossRefGoogle Scholar
  21. Persico R (2014) Introduction to ground penetrating radar: inverse scattering and data processing. Wiley, Hoboken. ISBN 9781118305003CrossRefGoogle Scholar
  22. Persico R, Sala J (2014) The problem of the investigation domain subdivision in 2D linear inversions for large scale GPR data. IEEE Geosci Remote Sens Lett 11(7):1215–1219.  https://doi.org/10.1109/LGRS.2013.2290008 CrossRefGoogle Scholar
  23. Persico R, Pochanin G, Ruban V, Orlenko A, Catapano I, Soldovieri F (2016) Performances of a microwave tomographic algorithm for GPR systems working in differential configuration. IEEE J Sel Topics Appl Earth Observ Remote Sens 9:1343–1356CrossRefGoogle Scholar
  24. Persico R, Ludeno G, Soldovieri F, De Coster A, Lambot S (2017a) Shifting zoom on a linear inverse scattering algorithm applied to GPR data. In: Proceedings of Imeko international conference on metrology for archaeology and cultural heritage, Lecce, ItalyGoogle Scholar
  25. Persico R, Ludeno G, Soldovieri F, De Coster A, Lambot S (2017b) 2D linear inversion of GPR data with a shifting zoom along the observation line. Remote Sensing 9:980.  https://doi.org/10.3390/rs9100980 CrossRefGoogle Scholar
  26. Pettinelli E, Di Matteo A, Mattei E, Crocco L, Soldovieri F, Redman DJ, Annan AP (2009) GPR response from buried pipes: measurement on field site and tomographic reconstructions. IEEE Trans Geosci Remote Sens 47(8):2639–2645CrossRefGoogle Scholar
  27. Piro S, Goodman D, Nishimura Y (2003) The study and characterization of Emperor Traiano’s villa using high-resolution integrated geophysical surveys. Archaeol Prospect 10:1–25CrossRefGoogle Scholar
  28. Trinks I, Gansum T, Hinterleitner A (2010) Mapping iron-age graves in Norway using magnetic and GPR prospection. Antiquity 84:326Google Scholar
  29. Trinks I, Neubauer W, Hinterleitner A (2014) First high-resolution GPR and magnetic archaeological prospection at the viking age settlement of Birka in Sweden. Archaeol Prospect 21:185–199CrossRefGoogle Scholar
  30. Utsi E (2009) The shrine of Edward the confessor: a study in multi-frequency GPR investigation. In: IEEE, 978-1-4244-4605-6/09Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Raffaele Persico
    • 1
    • 2
  • Giovanni Ludeno
    • 3
  • Francesco Soldovieri
    • 3
  • Albéric De Coster
    • 4
  • Sébastien Lambot
    • 4
  1. 1.Institute for the Archaeological and Monumental Heritage IBAM-CNRLecceItaly
  2. 2.International Telematic University Uninettuno UTIURomeItaly
  3. 3.Institute for the electromagneting sensing of the environment IREA-CNRNaplesItaly
  4. 4.Universitè catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations