Advertisement

Imaging Spectroscopy of Urban Environments

  • S. van der Linden
  • A. Okujeni
  • F. Canters
  • J. Degerickx
  • U. Heiden
  • P. Hostert
  • F. Priem
  • B. Somers
  • F. Thiel
Article
  • 120 Downloads

Abstract

Future spaceborne imaging spectroscopy data will offer new possibilities for mapping ecosystems globally, including urban environments. The high spectral information content of such data is expected to improve accuracies and thematic detail of maps on urban composition and urban environmental condition. This way, urgently needed information for environmental models will be provided, for example, for microclimate or hydrological models. The diverse vertical structures, highly frequent spatial change and a great variety of materials cause challenges for urban environmental mapping with Earth observation data, especially at the 30 m spatial resolution of data from future spaceborne imaging spectrometers. This paper gives an overview of the state-of-the-art in urban imaging spectroscopy considering decreasing spatial resolution, the related user requirements and existing knowledge gaps, as well as expected future directions for the work with new data sets.

Keywords

Imaging spectroscopy Hyperspectral Urban Unmixing Spatial resolution Environmental Mapping and Analysis Program (EnMAP) 

Notes

Acknowledgements

The authors are grateful to the editors of the special issue and the organizers of the ISSI workshop on Exploring the Earth’s Ecosystems at a Global Scale with Imaging Spectroscopy Data in Bern, Switzerland, in November 2016, where the present paper was framed. The work of the authors was supported by the German Federal Ministry of Economic Affairs and Energy in the framework of the EnMAP Core Science Team (FKZ 50EE1622) and by the Belgian Science Policy Office in the framework of the Stereo III Project UrbanEARS (SR/00/307).

References

  1. Adeline KRM, Chen M, Briottet X, Pang SK, Paparoditis N (2013) Shadow detection in very high spatial resolution aerial images: a comparative study. ISPRS J Photogramm Remote Sens 80:21–38.  https://doi.org/10.1016/j.isprsjprs.2013.02.003 CrossRefGoogle Scholar
  2. Alberti M (2005) The effects of urban patterns on ecosystem function. Int Reg Sci Rev 28:168–192CrossRefGoogle Scholar
  3. Alonzo M, Roth K, Roberts D (2013) Identifying Santa Barbara’s urban tree species from AVIRIS imagery using canonical discriminant analysis. Remote Sens Lett 4:513–521.  https://doi.org/10.1080/2150704X.2013.764027 CrossRefGoogle Scholar
  4. Alonzo M, Bookhagen B, Roberts DA (2014) Urban tree species mapping using hyperspectral and lidar data fusion. Remote Sens Environ 148:70–83.  https://doi.org/10.1016/j.rse.2014.03.018 CrossRefGoogle Scholar
  5. Alonzo M, Bookhagen B, McFadden JP, Sun A, Roberts DA (2015) Mapping urban forest leaf area index with airborne lidar using penetration metrics and allometry. Remote Sens Environ 162:141–153.  https://doi.org/10.1016/j.rse.2015.02.025 CrossRefGoogle Scholar
  6. Asner GP et al (2012) Carnegie Airborne Observatory-2: Increasing science data dimensionality via high-fidelity multi-sensor fusion. Remote Sens Environ 124:454–465.  https://doi.org/10.1016/j.rse.2012.06.012 CrossRefGoogle Scholar
  7. Bechtel B et al (2015) Mapping local climate zones for a worldwide database of the form and function of cities. ISPRS Int J Geoinf 4:199.  https://doi.org/10.3390/ijgi4010199 CrossRefGoogle Scholar
  8. Behling R, Bochow M, Foerster S, Roessner S, Kaufmann H (2015) Automated GIS-based derivation of urban ecological indicators using hyperspectral remote sensing and height information. Ecol Ind 48:218–234.  https://doi.org/10.1016/j.ecolind.2014.08.003 CrossRefGoogle Scholar
  9. Ben-Dor E (2001) Imaging spectrometry for urban applications. In: van der Meer FD, De Jong SM (eds) Imaging spectrometry—basic principles and prospective applications. Remote sensing and digital image processing, vol 4. Springer, Dordrecht, pp 243–281Google Scholar
  10. Ben-Dor E, Levin N, Saaroni H (2001) A spectral based recognition of the urban environment using the visible and near-infrared spectral region (0.4–1.1 µm). A case study over Tel-Aviv, Israel. Int J Remote Sens 22:2193–2218Google Scholar
  11. Brackx M, Van Wittenberghe S, Verhelst J, Scheunders P, Samson R (2017) Hyperspectral leaf reflectance of Carpinus betulus L. saplings for urban air quality estimation. Environ Pollut 220:159–167.  https://doi.org/10.1016/j.envpol.2016.09.035 CrossRefGoogle Scholar
  12. Carlson TN, Arthur ST (2000) The impact of land use—land cover changes due to urbanization on surface microclimate and hydrology: a satellite perspective. Glob Planet Change 25:49–65CrossRefGoogle Scholar
  13. Chen F, Wang K, Van de Voorde T, Tang TF (2017) Mapping urban land cover from high spatial resolution hyperspectral data: an approach based on simultaneously unmixing similar pixels with jointly sparse spectral mixture analysis. Remote Sens Environ 196:324–342.  https://doi.org/10.1016/j.rse.2017.05.014 CrossRefGoogle Scholar
  14. Damm A (2008) Hyperspektrale Fernerkundung zur Ableitung pflanzenphysiologischer Parameter von Stadtbäumen – Strahlungstransfermodellierung für Berliner Kastanienbestände. Dissertation, Humboldt-Universität zu BerlinGoogle Scholar
  15. Degerickx J, Okujeni A, Iordache M-D, Hermy M, van der Linden S, Somers B (2017) A novel spectral library pruning technique for spectral unmixing of urban land cover. Remote Sens 9:565CrossRefGoogle Scholar
  16. Degerickx J, Roberts D, McFadden JP, Hermy M, Somers B (2018) Urban tree health assessment using airborne hyperspectral and LiDAR imagery. Int J Appl Earth Obs Geoinf 73:26–38CrossRefGoogle Scholar
  17. Delegido J et al (2014) Chlorophyll content mapping of urban vegetation in the city of Valencia based on the hyperspectral NAOC index. Ecol Ind 40:34–42.  https://doi.org/10.1016/j.ecolind.2014.01.002 CrossRefGoogle Scholar
  18. Demarchi L, Canters F, Chan JC-W, van de Voorde T (2012a) Multiple endmember unmixing of CHRIS/Proba imagery for mapping impervious surfaces in urban and suburban environments. IEEE Trans Geosci Remote Sens 50:3409–3424.  https://doi.org/10.1109/tgrs.2011.2181853 CrossRefGoogle Scholar
  19. Demarchi L, Chan JC-W, Ma J, Canters F (2012b) Mapping impervious surfaces from superresolution enhanced CHRIS/Proba imagery using multiple endmember unmixing. ISPRS J Photogramm Remote Sens 72:99–112.  https://doi.org/10.1016/j.isprsjprs.2012.05.015 CrossRefGoogle Scholar
  20. Demarchi L, Canters F, Cariou C, Licciardi G, Chan JC-W (2014) Assessing the performance of two unsupervised dimensionality reduction techniques on hyperspectral APEX data for high resolution urban land-cover mapping. ISPRS J Photogramm Remote Sens 87:166–179.  https://doi.org/10.1016/j.isprsjprs.2013.10.012 CrossRefGoogle Scholar
  21. Deng C, Wu C (2013) Examining the impacts of urban biophysical compositions on surface urban heat island: a spectral unmixing and thermal mixing approach. Remote Sens Environ 131:262–274.  https://doi.org/10.1016/j.rse.2012.12.020 CrossRefGoogle Scholar
  22. Duca R, Del Frate F (2008) Hyperspectral and multiangle CHRIS–PROBA images for the generation of land cover maps. IEEE Trans Geosci Remote Sens 46:2857–2866.  https://doi.org/10.1109/tgrs.2008.2000741 CrossRefGoogle Scholar
  23. Fan F, Deng Y (2014) Enhancing endmember selection in multiple endmember spectral mixture analysis (MESMA) for urban impervious surface area mapping using spectral angle and spectral distance parameters. Int J Appl Earth Obs Geoinf 33:290–301.  https://doi.org/10.1016/j.jag.2014.06.011 CrossRefGoogle Scholar
  24. Fenger J (1999) Urban air quality. Atmos Environ 33:4877–4900CrossRefGoogle Scholar
  25. Franke J, Roberts DA, Halligan K, Menz G (2009) Hierarchical multiple endmember spectral mixture analysis (MESMA) of hyperspectral imagery for urban environments. Remote Sens Environ 113:1712–1723CrossRefGoogle Scholar
  26. Gastellu-Etchegorry J-P et al (2015) Discrete anisotropic radiative transfer (DART 5) for modeling airborne and satellite spectroradiometer and LIDAR acquisitions of natural and urban landscapes. Remote Sens 7:1667CrossRefGoogle Scholar
  27. Giardino C et al (2018) Imaging spectrometry of inland and coastal waters: state of the art, achievements and perspectives. Surv Geophy.  https://doi.org/10.1007/s10712-018-9476-0 Google Scholar
  28. Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu JG, Bai XM, Briggs JM (2008) Global change and the ecology of cities. Science 319:756–760.  https://doi.org/10.1126/science.1150195 CrossRefGoogle Scholar
  29. Grimmond S (2007) Urbanization and global environmental change: local effects of urban warming. Geogr J 173:83–88.  https://doi.org/10.1111/j.1475-4959.2007.232_3.x CrossRefGoogle Scholar
  30. Gu H, Singh A, Townsend PA (2015) Detection of gradients of forest composition in an urban area using imaging spectroscopy. Remote Sens Environ 167:168–180.  https://doi.org/10.1016/j.rse.2015.06.010 CrossRefGoogle Scholar
  31. Guanter L et al (2015) The EnMAP spaceborne imaging spectroscopy mission for Earth observation. Remote Sens 7:8830CrossRefGoogle Scholar
  32. Guarini R, Loizzo R, Longo F, Mari S, Scopa T, Varacalli G (2017) Overview of the Prisma space and ground segment and its hyperspectral products. Paper presented at the proceedings of 2017 ieee international geoscience and remote sensing symposium, July 23–28, 2017, Fort Worth, TexasGoogle Scholar
  33. Harlan SL, Brazel AJ, Prashad L, Stefanov WL, Larsen L (2006) Neighborhood microclimates and vulnerability to heat stress. Soc Sci Med 63:2847–2863.  https://doi.org/10.1016/j.socscimed.2006.07.030 CrossRefGoogle Scholar
  34. Hatt BE, Fletcher TD, Walsh CJ, Taylor SL (2004) The influence of urban density and drainage infrastructure on the concentrations and loads of pollutants in small streams. Environ Manag 34:112–124CrossRefGoogle Scholar
  35. Heiden U, Segl K, Roessner S, Kaufmann H (2007) Determination of robust spectral features for identification of urban surface materials in hyperspectral remote sensing data. Remote Sens Environ 111:537–552CrossRefGoogle Scholar
  36. Heiden U, Heldens W, Roessner S, Segl K, Esch T, Mueller A (2012) Urban structure type characterization using hyperspectral remote sensing and height information. Landsc Urban Plan 105:361–375.  https://doi.org/10.1016/j.landurbplan.2012.01.001 CrossRefGoogle Scholar
  37. Heldens W, Heiden U, Esch T, Mueller A, Dech S (2017) Integration of remote sensing based surface information into a three-dimensional microclimate model. ISPRS J Photogramm Remote Sens 125:106–124.  https://doi.org/10.1016/j.isprsjprs.2017.01.009 CrossRefGoogle Scholar
  38. Herold M, Roberts D (2005) Spectral characteristics of asphalt road aging and deterioration: implications for remote-sensing applications. Appl Opt 44:4327–4334CrossRefGoogle Scholar
  39. Herold M, Gardner ME, Roberts DA (2003) Spectral resolution requirements for mapping urban areas. IEEE Trans Geosci Remote Sens 41:1907–1919CrossRefGoogle Scholar
  40. Herold M, Roberts DA, Gardner ME, Dennison PE (2004) Spectrometry for urban area remote sensing—development and analysis of a spectral library from 350 to 2400 nm. Remote Sens Environ 91:304–319CrossRefGoogle Scholar
  41. Herold M, Schiefer S, Hostert P, Roberts DA (2007) Applying imaging spectrometry in urban areas. In: Quattrochi DA, Weng QH (eds) Urban remote sensing. CRC Press Inc., Boca Raton, pp 137–161Google Scholar
  42. Hill J, Buddenbaum H, Townsend PA Imaging spectroscopy of forest ecosystems. Surv Geophys (under review)Google Scholar
  43. Hochberg EJ, Roberts DA, Dennison PE, Hulley GC (2015) Special issue on the hyperspectral infrared imager (HyspIRI): emerging science in terrestrial and aquatic ecology, radiation balance and hazards. Remote Sens Environ 167:1–5.  https://doi.org/10.1016/j.rse.2015.06.011 CrossRefGoogle Scholar
  44. Huang Y, Yu B, Zhou J, Hu C, Tan W, Hu Z, Wu J (2013) Toward automatic estimation of urban green volume using airborne LiDAR data and high resolution remote sensing images. Front Earth Sci 7:43–54.  https://doi.org/10.1007/s11707-012-0339-6 CrossRefGoogle Scholar
  45. Imhoff ML, Zhang P, Wolfe RE, Bounoua L (2010) Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens Environ 114:504–513.  https://doi.org/10.1016/j.rse.2009.10.008 CrossRefGoogle Scholar
  46. Jilge M, Heiden U, Habermeyer M, Mende A, Juergens C (2017) Detecting unknown artificial urban surface materials based on spectral dissimilarity analysis. Sensors 17:1826CrossRefGoogle Scholar
  47. Kennedy C et al (2009) Greenhouse gas emissions from global cities. Environ Sci Technol 43:7297–7302.  https://doi.org/10.1021/es900213p CrossRefGoogle Scholar
  48. Kruse FA, Boardman JW, Huntington JF (2003) Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Trans Geosci Remote Sens 41:1388–1400.  https://doi.org/10.1109/tgrs.2003.812908 CrossRefGoogle Scholar
  49. Lambin EF et al (2001) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Change 11:261–269.  https://doi.org/10.1016/S0959-3780(01)00007-3 CrossRefGoogle Scholar
  50. Launeau P et al (2017) Airborne hyperspectral mapping of trees in an urban area. Int J Remote Sens 38:1277–1311.  https://doi.org/10.1080/01431161.2017.1285080 Google Scholar
  51. Lawler JJ et al (2014) Projected land-use change impacts on ecosystem services in the United States. Proc Natl Acad Sci 111:7492–7497.  https://doi.org/10.1073/pnas.1405557111 CrossRefGoogle Scholar
  52. Leitão P, Schwieder M, Suess S, Okujeni A, Galvão L, van der Linden S, Hostert P (2015) Monitoring natural ecosystem and ecological gradients: perspectives with EnMAP. Remote Sens 7:13098CrossRefGoogle Scholar
  53. Licciardi GA, Del Frate F (2011) Pixel unmixing in hyperspectral data by means of neural networks. IEEE Trans Geosci Remote Sens 49:4163–4172.  https://doi.org/10.1109/tgrs.2011.2160950 CrossRefGoogle Scholar
  54. Matsunaga T et al (2017) Current status of hyperspectral imager suite (HISUI) onboard International Space Station (ISS). Paper presented at the proceedings of 2017 IEEE international geoscience and remote sensing symposium, July 23–28, 2017, Fort Worth, TexasGoogle Scholar
  55. Ngie A, Abutaleb K, Ahmed F, Darwish A, Ahmed M (2014) Assessment of urban heat island using satellite remotely sensed imagery: a review. S Afr Geogr J 96:198–214.  https://doi.org/10.1080/03736245.2014.924864 CrossRefGoogle Scholar
  56. Oke TR (1982) The energetic basis of the urban heat island. Q J R Meteorol Soc 108:1–24.  https://doi.org/10.1002/qj.49710845502 Google Scholar
  57. Okujeni A, van der Linden S, Tits L, Somers B, Hostert P (2013) Support vector regression and synthetically mixed training data for quantifying urban land cover. Remote Sens Environ 137:184–197.  https://doi.org/10.1016/j.rse.2013.06.007 CrossRefGoogle Scholar
  58. Okujeni A, van der Linden S, Jakimow B, Rabe A, Verrelst J, Hostert P (2014) A comparison of advanced regression algorithms for quantifying urban land cover. Remote Sens 6:6324–6346CrossRefGoogle Scholar
  59. Okujeni A, van der Linden S, Hostert P (2015) Extending the vegetation–impervious–soil model using simulated EnMAP data and machine learning. Remote Sens Environ 158:69–80.  https://doi.org/10.1016/j.rse.2014.11.009 CrossRefGoogle Scholar
  60. Okujeni A, van der Linden S, Suess S, Hostert P (2017) Ensemble learning from synthetically mixed training data for quantifying urban land cover with support vector regression. IEEE J Sel Top Appl Earth Obs Remote Sens 10:1640–1650.  https://doi.org/10.1109/JSTARS.2016.2634859 CrossRefGoogle Scholar
  61. Pauleit S, Ennos R, Golding Y (2005) Modeling the environmental impacts of urban land use and land cover change—a study in Merseyside. UK Landsc Urban Plan 71:295–310CrossRefGoogle Scholar
  62. Pickett STA et al (2011) Urban ecological systems: scientific foundations and a decade of progress. J Environ Manag 92:331–362.  https://doi.org/10.1016/j.jenvman.2010.08.022 CrossRefGoogle Scholar
  63. Pontius J, Hanavan RP, Hallett RA, Cook BD, Corp LA (2017) High spatial resolution spectral unmixing for mapping ash species across a complex urban environment. Remote Sens Environ 199:360–369.  https://doi.org/10.1016/j.rse.2017.07.027 CrossRefGoogle Scholar
  64. Price JC (1995) Examples of high resolution visible to near-infrared reflectance spectra and a standardized collection for remote sensing studies. Int J Remote Sens 16:993–1000.  https://doi.org/10.1080/01431169508954459 CrossRefGoogle Scholar
  65. Priem F, Canters F (2016) Synergistic use of LiDAR and APEX hyperspectral data for high-resolution urban land cover mapping. Remote Sens 8:787CrossRefGoogle Scholar
  66. Priem F, Okujeni A, van der Linden S, Canters F (2016) Use of multispectral satellite imagery and hyperspectral endmember libraries for urban land cover mapping at the metropolitan scale. In: SPIE remote sensing. SPIE, p 100080K.  https://doi.org/10.1117/12.2240929
  67. Priem F, Canters F, Okujeni A, van der Linden S (2017) Optimizing mixed spectra generation for regression-based unmixing of land cover in urban areas. In: 2017 joint urban remote sensing event (JURSE), 6–8 March 2017, pp 1–4.  https://doi.org/10.1109/jurse.2017.7924554
  68. Ridd MK (1995) Exploring a V–I–S (vegetation–impervious surface–soil) model for urban ecosystem analysis through remote-sensing—comparative anatomy for cities. Int J Remote Sens 16:2165–2185CrossRefGoogle Scholar
  69. Roberts DA, Quattrochi DA, Hulley GC, Hook SJ, Green RO (2012) Synergies between VSWIR and TIR data for the urban environment: an evaluation of the potential for the hyperspectral infrared imager (HyspIRI) decadal survey mission. Remote Sens Environ 117:83–101.  https://doi.org/10.1016/j.rse.2011.07.021 CrossRefGoogle Scholar
  70. Roessner S, Segl K, Heiden U, Kaufmann H (2001) Automated differentiation of urban surfaces based on airborne hyperspectral imagery. IEEE Trans Geosci Remote Sens 39:1525–1532CrossRefGoogle Scholar
  71. Rosentreter J, Hagensieker R, Okujeni A, Roscher R, Wagner PD, Waske B (2017) subpixel mapping of urban areas using EnMAP data and multioutput support vector regression. IEEE J Sel Top Appl Earth Obs Remote Sens 10:1938–1948.  https://doi.org/10.1109/JSTARS.2017.2652726 CrossRefGoogle Scholar
  72. Schiefer S, Hostert P, Damm A (2006) Correcting brightness gradients in hyperspectral data from urban areas. Remote Sens Environ 101:25–37CrossRefGoogle Scholar
  73. Segl K et al (2012) EeteS-The EnMAP End-to-End simulation tool. IEEE J Sel Top Appl Earth Obs Remote Sens 5:522–530.  https://doi.org/10.1109/JSTARS.2012.2188994 CrossRefGoogle Scholar
  74. Seto KC, Sanchez-Rodriguez R, Fragkias M (2010) The new geography of contemporary urbanization and the environment. Ann Rev Environ Resour 35:167–194.  https://doi.org/10.1146/annurev-environ-100809-125336 CrossRefGoogle Scholar
  75. Singh A, Serbin SP, McNeil BE, Kingdon CC, Townsend PA (2015) Imaging spectroscopy algorithms for mapping canopy foliar chemical and morphological traits and their uncertainties. Ecol Appl 25:2180–2197CrossRefGoogle Scholar
  76. Small C (2001) Estimation of urban vegetation abundance by spectral mixture analysis. Int J Remote Sens 22:1305–1334CrossRefGoogle Scholar
  77. Small C (2003) High spatial resolution spectral mixture analysis of urban reflectance. Remote Sens Environ 88:170–186CrossRefGoogle Scholar
  78. Small C (2005) A global analysis of urban reflectance. Int J Remote Sens 26:661–681CrossRefGoogle Scholar
  79. Small C, Okujeni A, van der Linden S, Waske B (2018) 6.07—remote sensing of urban environments A2—Liang, Shunlin. In: Comprehensive remote sensing. Elsevier, Oxford, pp 96–127.  https://doi.org/10.1016/B978-0-12-409548-9.10380-X
  80. Stewart ID, Oke TR (2012) Local climate zones for urban temperature studies. Bull Am Meteorol Soc 93:1879–1900.  https://doi.org/10.1175/bams-d-11-00019.1 CrossRefGoogle Scholar
  81. Tan J et al (2010) The urban heat island and its impact on heat waves and human health in Shanghai. Int J Biometeorol 54:75–84.  https://doi.org/10.1007/s00484-009-0256-x CrossRefGoogle Scholar
  82. Tigges J, Lakes T, Hostert P (2013) Urban vegetation classification: benefits of multitemporal RapidEye satellite data. Remote Sens Environ 136:66–75.  https://doi.org/10.1016/j.rse.2013.05.001 CrossRefGoogle Scholar
  83. UN (2018) World urbanization prospects. The 2018 revision. https://esa.un.org/unpd/wup/Publications/Files/WUP2018-KeyFacts.pdf. Accessed 7 June 2018
  84. UN-Habitat (2010) State of the world's cities 2010/2011 - cities for all: bridging the urban divide state of the world's cities reports. UN-Habitat, 224 pGoogle Scholar
  85. van der Linden S, Hostert P (2009) The influence of urban structures on impervious surface maps from airborne hyperspectral data. Remote Sens Environ 113:2298–2305.  https://doi.org/10.1016/j.rse.2009.06.004 CrossRefGoogle Scholar
  86. van der Linden S, Janz A, Waske B, Eiden M, Hostert P (2007) Classifying segmented hyperspectral data from a heterogeneous urban environment using support vector machines. J Appl Remote Sens 1:013543CrossRefGoogle Scholar
  87. van der Meer FD et al (2012) Multi- and hyperspectral geologic remote sensing: A review. Int J Appl Earth Obs Geoinf 14:112–128.  https://doi.org/10.1016/j.jag.2011.08.002 CrossRefGoogle Scholar
  88. Van Wittenberghe S et al (2013) Upward and downward solar-induced chlorophyll fluorescence yield indices of four tree species as indicators of traffic pollution in Valencia. Environ Pollut 173:29–37.  https://doi.org/10.1016/j.envpol.2012.10.003 CrossRefGoogle Scholar
  89. Voogt JA, Oke TR (2003) Thermal remote sensing of urban climates. Remote Sens Environ 86:370–384.  https://doi.org/10.1016/S0034-4257(03)00079-8 CrossRefGoogle Scholar
  90. Weng QH (2001) Modeling urban growth effects on surface runoff with the integration of remote sensing and GIS. Environ Manag 28:737–748CrossRefGoogle Scholar
  91. Weng Q, Hu X, Lu D (2008) Extracting impervious surfaces from medium spatial resolution multispectral and hyperspectral imagery: a comparison. Int J Remote Sens 29:3209–3232.  https://doi.org/10.1080/01431160701469024 CrossRefGoogle Scholar
  92. Wetherley EB, Roberts DA, McFadden JP (2017) Mapping spectrally similar urban materials at sub-pixel scales. Remote Sens Environ 195:170–183.  https://doi.org/10.1016/j.rse.2017.04.013 CrossRefGoogle Scholar
  93. Wirion C, Bauwens W, Verbeiren B (2017) Location- and time-specific hydrological simulations with multi-resolution remote sensing data in urban areas. Remote Sens 9:645CrossRefGoogle Scholar
  94. Wu CS, Murray AT (2003) Estimating impervious surface distribution by spectral mixture analysis. Remote Sens Environ 84:493–505CrossRefGoogle Scholar
  95. Yokoya N, Chan J, Segl K (2016) Potential of resolution-enhanced hyperspectral data for mineral mapping using simulated EnMAP and Sentinel-2 images. Remote Sens 8:172CrossRefGoogle Scholar
  96. Zhou GQ, Chen WR, Kelmelis JA, Zhang DY (2005) A comprehensive study on urban true orthorectification. IEEE Trans Geosci Remote Sens 43:2138–2147CrossRefGoogle Scholar
  97. Zhu Z, Woodcock CE, Rogan J, Kellndorfer J (2012) Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data. Remote Sens Environ 117:72–82.  https://doi.org/10.1016/j.rse.2011.07.020 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Geography DepartmentHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Integrative Research Institute on Transformations of Human-Environment SystemsHumboldt-Universität zu BerlinBerlinGermany
  3. 3.Department of Geography, Cartography and GIS Research GroupVrije Universiteit BrusselBrusselsBelgium
  4. 4.Division of Forest, Nature and LandscapeKU LeuvenLeuvenBelgium
  5. 5.Department of Land Surface Dynamics, German Remote Sensing Data CenterGerman Aerospace CenterWeßlingGermany

Personalised recommendations