Advertisement

Surveys in Geophysics

, Volume 40, Issue 3, pp 589–629 | Cite as

Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods

  • Jochem VerrelstEmail author
  • Zbyněk Malenovský
  • Christiaan Van der Tol
  • Gustau Camps-Valls
  • Jean-Philippe Gastellu-Etchegorry
  • Philip Lewis
  • Peter North
  • Jose Moreno
Article

Abstract

An unprecedented spectroscopic data stream will soon become available with forthcoming Earth-observing satellite missions equipped with imaging spectroradiometers. This data stream will open up a vast array of opportunities to quantify a diversity of biochemical and structural vegetation properties. The processing requirements for such large data streams require reliable retrieval techniques enabling the spatiotemporally explicit quantification of biophysical variables. With the aim of preparing for this new era of Earth observation, this review summarizes the state-of-the-art retrieval methods that have been applied in experimental imaging spectroscopy studies inferring all kinds of vegetation biophysical variables. Identified retrieval methods are categorized into: (1) parametric regression, including vegetation indices, shape indices and spectral transformations; (2) nonparametric regression, including linear and nonlinear machine learning regression algorithms; (3) physically based, including inversion of radiative transfer models (RTMs) using numerical optimization and look-up table approaches; and (4) hybrid regression methods, which combine RTM simulations with machine learning regression methods. For each of these categories, an overview of widely applied methods with application to mapping vegetation properties is given. In view of processing imaging spectroscopy data, a critical aspect involves the challenge of dealing with spectral multicollinearity. The ability to provide robust estimates, retrieval uncertainties and acceptable retrieval processing speed are other important aspects in view of operational processing. Recommendations towards new-generation spectroscopy-based processing chains for operational production of biophysical variables are given.

Keywords

Imaging spectroscopy Retrieval Vegetation properties Parametric and nonparametric regression Machine learning Radiative transfer models Inversion Uncertainties 

Notes

Acknowledgements

Jochem Verrelst was supported by the European Research Council (ERC) under the ERC-2017-STG SENTIFLEX project (grant agreement 755617). Contribution of Zbyněk Malenovský was supported by the Australian Research Council Future Fellowship: Bridging scales in remote sensing of vegetation stress (FT160100477). Gustau Camps-Valls was supported by the ERC under the ERC-CoG-2014 SEDAL project (grant agreement 647423). We thank the two reviewers for their valuable suggestions.

References

  1. Adam E, Mutanga O, Abdel-Rahman E, Ismail R (2014) Estimating standing biomass in papyrus (Cyperus papyrus L.) swamp: exploratory of in situ hyperspectral indices and random forest regression. Int J Remote Sens 35(2):693–714Google Scholar
  2. Addink E, De Jong S, Pebesma E (2007) The importance of scale in object-based mapping of vegetation parameters with hyperspectral imagery. Photogramm Eng Remote Sens 73(8):905–912Google Scholar
  3. Ali A, Skidmore A, Darvishzadeh R, van Duren I, Holzwarth S, Mueller J (2016) Retrieval of forest leaf functional traits from HySpex imagery using radiative transfer models and continuous wavelet analysis. ISPRS J Photogramm Remote Sens 122:68–80Google Scholar
  4. Alton P, Ellis R, Los S, North P (2007) Improved global simulations of gross primary product based on a separate and explicit treatment of diffuse and direct sunlight. J Geophys Res Atmos 112:D02108Google Scholar
  5. Arellano P, Tansey K, Balzter H, Tellkamp M (2017) Plant family-specific impacts of petroleum pollution on biodiversity and leaf chlorophyll content in the Amazon rainforest of Ecuador. PLoS ONE 12(1):e0169867Google Scholar
  6. Arenas-García J, Camps-Valls G (2008) Efficient kernel orthonormalized PLS for remote sensing applications. IEEE Trans Geosci Remote Sens 46(10):2872–2881Google Scholar
  7. Ashourloo D, Aghighi H, Matkan A, Mobasheri M, Rad A (2016) An investigation into machine learning regression techniques for the leaf rust disease detection using hyperspectral measurement. IEEE J Select Top Appl Earth Observ Remote Sens 9(9):4344–4351Google Scholar
  8. Atzberger C, Guérif M, Baret F, Werner W (2010) Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat. Comput Electron Agric 73(2):165–173Google Scholar
  9. Atzberger C, Darvishzadeh R, Immitzer M, Schlerf M, Skidmore A, le Maire G (2015) Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy. Int J Appl Earth Observ Geoinf 43:19–31Google Scholar
  10. Bacour C, Baret F, Béal D, Weiss M, Pavageau K (2006) Neural network estimation of LAI, fAPAR, fCover and LAI\(\times\)Cab, from top of canopy MERIS reflectance data: principles and validation. Remote Sens Environ 105(4):313–325Google Scholar
  11. Balzarolo M, Vescovo L, Hammerle A, Gianelle D, Papale D, Tomelleri E, Wohlfahrt G (2015) On the relationship between ecosystem-scale hyperspectral reflectance and \(CO_2\) exchange in European mountain grasslands. Biogeosciences 12(10):3089–3108Google Scholar
  12. Banskota A, Wynne R, Thomas V, Serbin S, Kayastha N, Gastellu-Etchegorry J, Townsend P (2013) Investigating the utility of wavelet transforms for inverting a 3-D radiative transfer model using hyperspectral data to retrieve forest LAI. Remote Sens 5(6):2639–2659Google Scholar
  13. Banskota A, Serbin S, Wynne R, Thomas V, Falkowski M, Kayastha N, Gastellu-Etchegorry JP, Townsend P (2015) An LUT-based inversion of DART model to estimate forest LAI from hyperspectral data. IEEE J Sel Top Appl Earth Observ Remote Sens 8(6):3147–3160Google Scholar
  14. Bao S, Cao C, Chen W, Tian H (2017) Spectral features and separability of alpine wetland grass species. Spectrosc Lett 50(5):245–256Google Scholar
  15. Baranoski G, Rokne J (2005) A practical approach for estimating the red edge position of plant leaf reflectance. Int J Remote Sens 26(3):503–521Google Scholar
  16. Baret F, Buis S (2008) Estimating canopy characteristics from remote sensing observations. Review of methods and associated problems. In: Liang S (ed) Advances in land remote sensing: system, modeling, inversion and application. Springer, New York, pp 171–200Google Scholar
  17. Baret F, Weiss M, Lacaze R, Camacho F, Makhmara H, Pacholcyzk P, Smets B (2013) GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part 1: principles of development and production. Remote Sens Environ 137:299–309Google Scholar
  18. Barton CVM, North P (2001) Remote sensing of canopy light use efficiency using the photochemical reflectance index: model and sensitivity analysis. Remote Sens Environ 78(3):264–273Google Scholar
  19. Bayat B, van der Tol C, Verhoef W (2016) Remote sensing of grass response to drought stress using spectroscopic techniques and canopy reflectance model inversion. Remote Sens 8(7):557Google Scholar
  20. Belgiu M, Drăguţ L (2016) Random forest in remote sensing: a review of applications and future directions. ISPRS J Photogramm Remote Sens 114:24–31Google Scholar
  21. Berk A, Anderson G, Acharya P, Bernstein L, Muratov L, Lee J, Fox M, Adler-Golden S, Chetwynd J, Hoke M, Lockwood R, Gardner J, Cooley T, Borel C, Lewis P, Shettle E (2006) MODTRANTM5: 2006 update. vol 6233 IIGoogle Scholar
  22. Botha E, Leblon B, Zebarth B, Watmough J (2007) Non-destructive estimation of potato leaf chlorophyll from canopy hyperspectral reflectance using the inverted PROSAIL model. Int J Appl Earth Observ Geoinf 9(4):360–374Google Scholar
  23. Bratsch S, Epstein H, Buchhorn M, Walker D, Landes H (2017) Relationships between hyperspectral data and components of vegetation biomass in Low Arctic tundra communities at Ivotuk, Alaska. Environ Res Lett 12(2):025003Google Scholar
  24. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140Google Scholar
  25. Breiman L (2001) Random forests. Mach Learn 45(1):5–32Google Scholar
  26. Breiman L, Friedman J, Stone C, Olshen R (1984) Classification and regression trees. The Wadsworth and Brooks-Cole statistics-probability series. Taylor & Francis, LondonGoogle Scholar
  27. Broge NH, Leblanc E (2001) Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens Environ 76(2):156–172Google Scholar
  28. Broomhead DS, Lowe D (1988) Radial basis functions, multi-variable functional interpolation and adaptive networks. Tech. rep, Royal Signals and Radar Establishment Malvern (United Kingdom)Google Scholar
  29. Buchhorn M, Walker DA, Heim B, Raynolds MK, Epstein HE, Schwieder M (2013) Ground-based hyperspectral characterization of alaska tundra vegetation along environmental gradients. Remote Sens 5(8):3971–4005Google Scholar
  30. Burden F, Winkler D (1999) Robust QSAR models using bayesian regularized neural networks. J Med Chem 42(16):3183–3187Google Scholar
  31. Bye I, North P, Los S, Kljun N, Rosette J, Hopkinson C, Chasmer L, Mahoney C (2017) Estimating forest canopy parameters from satellite waveform LiDAR by inversion of the FLIGHT three-dimensional radiative transfer model. Remote Sens Environ 188:177–189Google Scholar
  32. Camps-Valls G, Verrelst J, Muñoz-Marí J, Laparra V, Mateo-Jiménez F, Gómez-Dans J (2016) A survey on Gaussian processes for earth observation data analysis. IEEE Geosci Remote Sens Mag 4(2):41–57Google Scholar
  33. Capolupo A, Kooistra L, Berendonk C, Boccia L, Suomalainen J (2015) Estimating plant traits of grasslands from UAV-acquired hyperspectral images: a comparison of statistical approaches. ISPRS Int J Geo-Inf 4(4):2792–2820Google Scholar
  34. Chen B, Wu Z, Wang J, Dong J, Guan L, Chen J, Yang K, Xie G (2015) Spatio-temporal prediction of leaf area index of rubber plantation using HJ-1A/1B CCD images and recurrent neural network. ISPRS J Photogramm Remote Sens 102:148–160Google Scholar
  35. Cho MA, Skidmore AK (2006) A new technique for extracting the red edge position from hyperspectral data: the linear extrapolation method. Remote Sens Environ 101(2):181–193Google Scholar
  36. Cho M, Skidmore A, Corsi F, van Wieren S, Ib Sobhan (2007) Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression. Int J Appl Earth Observ Geoinf 9(4):414–424Google Scholar
  37. Cho MA, Skidmore AK, Atzberger C (2008) Towards red-edge positions less sensitive to canopy biophysical parameters for leaf chlorophyll estimation using properties optique spectrales des feuilles (PROSPECT) and scattering by arbitrarily inclined leaves (SAILH) simulated data. Int J Remote Sens 29(8):2241–2255Google Scholar
  38. Clark RN, Roush TL (1984) Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications. J Geophys Res Solid Earth 89(B7):6329–6340Google Scholar
  39. Clevers J (2014) Beyond NDVI: extraction of biophysical variables from remote sensing imagery. Remote Sens Digital Image Process 18:363–381Google Scholar
  40. Clevers J, Kooistra L (2012) Using hyperspectral remote sensing data for retrieving canopy chlorophyll and nitrogen content. IEEE J Sel Top Appl Earth Observ Remote Sens 5(2):574–583Google Scholar
  41. Clevers JGPW, Kooistra L, Salas EAL (2004) Study of heavy metal contamination in river floodplains using the red-edge position in spectroscopic data. Int J Remote Sens 25(19):3883–3895Google Scholar
  42. Coops NC, Smith ML, Martin M, Ollinger SV (2003) Prediction of eucalypt foliage nitrogen content from satellite-derived hyperspectral data. IEEE Trans Geosci Remote Sens 41(6):1338–1346Google Scholar
  43. Cressie N, Calder C, Clark J, Ver Hoef J, Wikle C (2009) Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modeling. Ecol Appl 19(3):553–570Google Scholar
  44. Danner M, Berger K, Wocher M, Mauser W, Hank T (2017) Retrieval of biophysical crop variables from multi-angular canopy spectroscopy. Remote Sens 9(7):726Google Scholar
  45. Darvishzadeh R, Skidmore A, Schlerf M, Atzberger C (2008) Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland. Remote Sens Environ 112(5):2592–2604Google Scholar
  46. Darvishzadeh R, Matkan AA, Dashti Ahangar A (2012) Inversion of a radiative transfer model for estimation of rice canopy chlorophyll content using a lookup-table approach. IEEE J Sel Top Appl Earth Observ Remote Sens 99:1–9Google Scholar
  47. Dawson T, Curran P, Plummer S (1998) LIBERTY—Modeling the effects of leaf biochemical concentration on reflectance spectra. Remote Sens Environ 65(1):50–60Google Scholar
  48. Delegido J, Alonso L, González G, Moreno J (2010) Estimating chlorophyll content of crops from hyperspectral data using a normalized area over reflectance curve (NAOC). Int J Appl Earth Observ Geoinf 12(3):165–174Google Scholar
  49. Delegido J, Verrelst J, Alonso L, Moreno J (2011) Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors 11(7):7063–7081Google Scholar
  50. Delegido J, Verrelst J, Meza C, Rivera J, Alonso L, Moreno J (2013) A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems. Eur J Agron 46:42–52Google Scholar
  51. Dietz A, Kuenzer C, Gessner U, Dech S (2012) Remote sensing of snow—a review of available methods. Int J Remote Sens 33(13):4094–4134Google Scholar
  52. Disney M, Lewis P, Saich P (2006) 3D modelling of forest canopy structure for remote sensing simulations in the optical and microwave domains. Remote Sens Environ 100(1):114–132Google Scholar
  53. Doktor D, Lausch A, Spengler D, Thurner M (2014) Extraction of plant physiological status from hyperspectral signatures using machine learning methods. Remote Sens 6(12):12247–12274Google Scholar
  54. Dorigo WA, Zurita-Milla R, de Wit AJW, Brazile J, Singh R, Schaepman ME (2007) A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling. Int J Appl Earth Observ Geoinf 9(2):165–193Google Scholar
  55. Dorigo W, Richter R, Baret F, Bamler R, Wagner W (2009) Enhanced automated canopy characterization from hyperspectral data by a novel two step radiative transfer model inversion approach. Remote Sens 1(4):1139–1170Google Scholar
  56. Draper NR, Smith H (2014) Applied regression analysis. Wiley, New YorkGoogle Scholar
  57. Dreccer M, Barnes L, Meder R (2014) Quantitative dynamics of stem water soluble carbohydrates in wheat can be monitored in the field using hyperspectral reflectance. Field Crops Res 159:70–80Google Scholar
  58. Drusch M, Moreno J, Del Bello U, Franco R, Goulas Y, Huth A, Kraft S, Middleton EM, Miglietta F, Mohammed G et al (2017) The fluorescence explorer mission concept-ESA’s earth explorer 8. IEEE Trans Geosci Remote Sens 55(3):1273–1284Google Scholar
  59. Du L, Shi S, Yang J, Sun J, Gong W (2016) Using different regression methods to estimate leaf nitrogen content in rice by fusing hyperspectral LiDAR data and laser-induced chlorophyll fluorescence data. Remote Sens 8(6):526Google Scholar
  60. Duan SB, Li ZL, Wu H, Tang BH, Ma L, Zhao E, Li C (2014) Inversion of the PROSAIL model to estimate leaf area index of maize, potato, and sunflower fields from unmanned aerial vehicle hyperspectral data. Int J Appl Earth Observ Geoinf 26(1):12–20Google Scholar
  61. Elvidge CD, Chen Z (1995) Comparison of broad-band and narrow-band red and near-infrared vegetation indices. Remote Sens Environ 54(1):38–48Google Scholar
  62. Favennec Y, Le Hardy D, Dubot F, Rousseau B, Rousse D (2016) Some speed-up strategies for solving inverse radiative transfer problems. J Phys Conf Ser 676(1):012006Google Scholar
  63. Fei Y, Jiulin S, Hongliang F, Zuofang Y, Jiahua Z, Yunqiang Z, Kaishan S, Zongming W, Maogui H (2012) Comparison of different methods for corn LAI estimation over northeastern China. Int J Appl Earth Observ Geoinf 18:462–471Google Scholar
  64. Feilhauer H, Asner GP, Martin RE (2015) Multi-method ensemble selection of spectral bands related to leaf biochemistry. Remote Sens Environ 164:57–65Google Scholar
  65. Feilhauer H, Somers B, van der Linden S (2017) Optical trait indicators for remote sensing of plant species composition: predictive power and seasonal variability. Ecol Indic 73:825–833Google Scholar
  66. Feng H, Yang F, Li Z, Yang G, Guo J, He P, Wang Y (2016) Hyperspectral estimation of leaf total phosphorus content in apple tree based on optimal weights combination model. Nongye Gongcheng Xuebao/Trans Chin Soc Agric Eng 32(7):173–180Google Scholar
  67. Feret JB, François C, Asner GP, Gitelson AA, Martin RE, Bidel LPR, Ustin SL, le Maire G, Jacquemoud S (2008) PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens Environ 112(6):3030–3043Google Scholar
  68. Foster A, Kakani V, Mosali J (2017) Estimation of bioenergy crop yield and N status by hyperspectral canopy reflectance and partial least square regression. Precis Agric 18(2):192–209Google Scholar
  69. Francl L, Panigrahi S (1997) Artificial neural network models of wheat leaf wetness. Agric For Meteorol 88(1–4):57–65Google Scholar
  70. Friedman J, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view of boosting. Ann Stat 28(2):337–407Google Scholar
  71. Fu Y, Yang G, Feng H, Xu X, Song X, Wang J (2012) Comparison of winter wheat LAI estimation methods based on hyperspectral dimensionality reduction and vegetation index. Nongye Gongcheng Xuebao/Trans Chin Soc Agric Eng 28(23):107–113Google Scholar
  72. Gastellu-Etchegorry J, Demarez V, Pinel V, Zagolski F (1996) Modeling radiative transfer in heterogeneous 3-D vegetation canopies. Remote Sens Environ 58(2):131–156Google Scholar
  73. Gastellu-Etchegorry J, Guillevic P, Zagolski F, Demarez V, Trichon V, Deering D, Leroy M (1999) Modeling BRF and radiation regime of boreal and tropical forests: I BRF. Remote Sens Environ 68(3):281–316Google Scholar
  74. Gastellu-Etchegorry J, Gascon F, Esteve P (2003) An interpolation procedure for generalizing a look-up table inversion method. Remote Sens Environ 87(1):55–71Google Scholar
  75. Gastellu-Etchegorry J, Martin E, Gascon F (2004) DART: a 3D model for simulating satellite images and studying surface radiation budget. Int J Remote Sens 25(1):73–96Google Scholar
  76. Gastellu-Etchegorry JP, Yin T, Lauret N, Cajgfinger T, Gregoire T, Grau E, Feret JB, Lopes M, Guilleux J, Dedieu G, Malenovský Z, Cook B, Morton D, Rubio J, Durrieu S, Cazanave G, Martin E, Ristorcelli T (2015) Discrete anisotropic radiative transfer (DART 5) for modeling airborne and satellite spectroradiometer and LIDAR acquisitions of natural and urban landscapes. Remote Sens 7(2):1667–1701Google Scholar
  77. Gastellu-Etchegorry JP, Yin T, Lauret N, Grau E, Rubio J, Cook B, Morton D, Sun G (2016) Simulation of satellite, airborne and terrestrial LiDAR with DART (I): Waveform simulation with quasi-Monte Carlo ray tracing. Remote Sens Environ 184:418–435Google Scholar
  78. Gastellu-Etchegorry J, Lauret N, Yin T, Landier L, Kallel A, Malenovský Z, Al Bitar A, Aval J, Benhmida S, Qi J, Medjdoub G, Guilleux J, Chavanon E, Cook B, Morton D, Nektarios N, Mitraka Z (2017) DART: recent advances in remote sensing data modeling with atmosphere, polarization, and chlorophyll fluorescence. IEEE J Sel Top Appl Earth Observ Remote Sens. Accepted 8 March 2017. (in press)Google Scholar
  79. Geladi P, Kowalski B (1986) Partial least-squares regression: a tutorial. Analytica Chimica Acta 185(C):1–17Google Scholar
  80. Gewali U, Monteiro S, Saber E (2018) Machine learning based hyperspectral image analysis: a survey. arXiv:1802.08701
  81. Gianelle D, Guastella F (2007) Nadir and off-nadir hyperspectral field data: strengths and limitations in estimating grassland biophysical characteristics. Int J Remote Sens 28(7):1547–1560Google Scholar
  82. Glenn E, Huete A, Nagler P, Nelson S (2008) Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: What vegetation indices can and cannot tell us about the landscape. Sensors 8(4):2136–2160Google Scholar
  83. Gómez-Chova L, Muñoz-Marí J, Laparra V, Malo-López J, Camps-Valls G (2011) A review of kernel methods in remote sensing data analysis. In: Optical remote sensing. Springer, Berlin, pp 171–206Google Scholar
  84. Gómez-Dans JL, Lewis PE, Disney M (2016) Efficient emulation of radiative transfer codes using gaussian processes and application to land surface parameter inferences. Remote Sens 8(2):119Google Scholar
  85. Gonsamo A (2011) Normalized sensitivity measures for leaf area index estimation using three-band spectral vegetation indices. Int J Remote Sens 32(7):2069–2080Google Scholar
  86. Govaerts YM, Verstraete MM (1998) Raytran: a Monte Carlo ray-tracing model to compute light scattering in three-dimensional heterogeneous media. IEEE Trans Geosci Remote Sens 36(2):493–505Google Scholar
  87. Grau E, Gastellu-Etchegorry JP (2013) Radiative transfer modeling in the Earth-Atmosphere system with DART model. Remote Sens Environ 139:149–170Google Scholar
  88. Guanter L, Kaufmann H, Segl K, Foerster S, Rogass C, Chabrillat S, Kuester T, Hollstein A, Rossner G, Chlebek C, Straif C, Fischer S, Schrader S, Storch T, Heiden U, Mueller A, Bachmann M, Muhle H, Muller R, Habermeyer M, Ohndorf A, Hill J, Buddenbaum H, Hostert P, van der Linden S, Leitao PJ, Rabe A, Doerffer R, Krasemann H, Xi H, Mauser W, Hank T, Locherer M, Rast M, Staenz K, Sang B (2015) The EnMAP spaceborne imaging spectroscopy mission for earth observation. Remote Sens 7(7):8830Google Scholar
  89. Guillevic P, Gastellu-Etchegorry J, Demarty J, Prévot L (2003) Thermal infrared radiative transfer within three-dimensional vegetation covers. J Geophys Res Atmos.  https://doi.org/10.1029/2002JD002247 Google Scholar
  90. Han ZY, Zhu XC, Fang XY, Wang ZY, Wang L, Zhao GX, Jiang YM (2016) Hyperspectral estimation of apple tree canopy LAI based on SVM and RF regression. Guang Pu Xue Yu Guang Pu Fen Xi/Spectrosc Spectr Anal 36(3):800–805Google Scholar
  91. Hancock S, Lewis P, Foster M, Disney M, Muller JP (2012) Measuring forests with dual wavelength lidar: a simulation study over topography. Agric For Meteorol 161:123–133Google Scholar
  92. Hansen PM, Schjoerring JK (2003) Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens Environ 86(4):542–553Google Scholar
  93. Harris A, Charnock R, Lucas R (2015) Hyperspectral remote sensing of peatland floristic gradients. Remote Sens Environ 162:99–111Google Scholar
  94. Haykin S (1999) Neural networks—a comprehensive foundation, 2nd edn. Prentice Hall, Upper SaddleGoogle Scholar
  95. He R, Qiao X, Jiang J, Guo H (2015) Retrieving canopy leaf total nitrogen content of winter wheat by continuous wavelet transform. Nongye Gongcheng Xuebao/Trans Chin Soc Agric Eng 31(2):141–146Google Scholar
  96. Heiskanen J, Rautiainen M, Stenberg P, Mõttus M, Vesanto VH (2013) Sensitivity of narrowband vegetation indices to boreal forest LAI, reflectance seasonality and species composition. ISPRS J Photogramm Remote Sens 78:1–14Google Scholar
  97. Hernández-Clemente R, North P, Hornero A, Zarco-Tejada P (2017) Assessing the effects of forest health on sun-induced chlorophyll fluorescence using the FluorFLIGHT 3-D radiative transfer model to account for forest structure. Remote Sens Environ 193:165–179Google Scholar
  98. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780Google Scholar
  99. Homolová L, Janoutová R, Malenovský Z (2016) Evaluation of various spectral inputs for estimation of forest biochemical and structural properties from airborne imaging spectroscopy data. 41:961–966Google Scholar
  100. Huang Z, Turner BJ, Dury SJ, Wallis IR, Foley WJ (2004) Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis. Remote Sens Environ 93(1):18–29Google Scholar
  101. Huang Y, Tian Q, Wang L, Geng J, Lyu C (2014) Estimating canopy leaf area index in the late stages of wheat growth using continuous wavelet transform. J Appl Remote Sens 8(1):083517Google Scholar
  102. Hughes G (1968) On the mean accuracy of statistical pattern recognizers. IEEE Trans Inf Theory 14(1):55–63Google Scholar
  103. Im J, Jensen JR, Coleman M, Nelson E (2009) Hyperspectral remote sensing analysis of short rotation woody crops grown with controlled nutrient and irrigation treatments. Geocarto Int 24(4):293–312Google Scholar
  104. Jacquemoud S, Baret F, Andrieu B, Danson FM, Jaggard K (1995) Extraction of vegetation biophysical parameters by inversion of the PROSPECT+SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors. Remote Sens Environ 52(3):163–172Google Scholar
  105. Jacquemoud S, Verhoef W, Baret F, Bacour C, Zarco-Tejada P, Asner G, François C, Ustin S (2009a) PROSPECT + SAIL models: a review of use for vegetation characterization. Remote Sens Environ 113(SUPPL. 1):S56–S66Google Scholar
  106. Jacquemoud S, Verhoef W, Baret F, Bacour C, Zarco-Tejada P, Asner G, François C, Ustin S (2009b) PROSPECT + SAIL models: a review of use for vegetation characterization. Remote Sens Environ 113(SUPPL. 1):S56–S66Google Scholar
  107. Jay S, Bendoula R, Hadoux X, Féret JB, Gorretta N (2016) A physically-based model for retrieving foliar biochemistry and leaf orientation using close-range imaging spectroscopy. Remote Sens Environ 177:220–236Google Scholar
  108. Jensen R, Hardin P, Hardin A (2012) Estimating urban leaf area index (LAI) of individual trees with hyperspectral data. Photogramm Eng Remote Sens 78(5):495–504Google Scholar
  109. Jia F, Liu G, Liu D, Zhang Y, Fan W, Xing X (2013) Comparison of different methods for estimating nitrogen concentration in flue-cured tobacco leaves based on hyperspectral reflectance. Field Crops Res 150:108–114Google Scholar
  110. Kalacska M, Lalonde M, Moore T (2015) Estimation of foliar chlorophyll and nitrogen content in an ombrotrophic bog from hyperspectral data: Scaling from leaf to image. Remote Sens Environ 169:270–279Google Scholar
  111. Kanke Y, Tubaña B, Dalen M, Harrell D (2016) Evaluation of red and red-edge reflectance-based vegetation indices for rice biomass and grain yield prediction models in paddy fields. Precis Agric 17(5):507–530Google Scholar
  112. Karimi Y, Prasher S, Madani A, Kim S (2008) Application of support vector machine technology for the estimation of crop biophysical parameters using aerial hyperspectral observations. Can Biosyst Eng/Le Genie des biosystems au Canada 50:7.13–7.20Google Scholar
  113. Kattenborn T, Fassnacht F, Pierce S, Lopatin J, Grime J, Schmidtlein S (2017) Linking plant strategies and plant traits derived by radiative transfer modelling. J Veg Sci 28(4):717–727Google Scholar
  114. Kempeneers P, Zarco-Tejada PJ, North PRJ, de Backer S, Delalieux S, Sepulcre-Cantó G, Morales F, van Aardt JAN, Sagardoy R, Coppin P, Scheunders P (2008) Model inversion for chlorophyll estimation in open canopies from hyperspectral imagery. Int J Remote Sens 29(17–18):5093–5111Google Scholar
  115. Kiala Z, Odindi J, Mutanga O, Peerbhay K (2016) Comparison of partial least squares and support vector regressions for predicting leaf area index on a tropical grassland using hyperspectral data. J Appl Remote Sens 10(3):036015Google Scholar
  116. Kimes DS, Nelson RF, Manry MT, Fung AK (1998) Attributes of neural networks for extracting continuous vegetation variables from optical and radar measurements. Int J Remote Sens 19(14):2639–2662Google Scholar
  117. Kira O, Nguy-Robertson A, Arkebauer T, Linker R, Gitelson A (2016) Informative spectral bands for remote green LAI estimation in C3 and C4 crops. Agric For Meteorol 218–219:243–249Google Scholar
  118. Knox N, Skidmore A, Prins H, Asner G, van der Werff H, de Boer W, van der Waal C, de Knegt H, Kohi E, Slotow R, Grant R (2011) Dry season mapping of savanna forage quality, using the hyperspectral Carnegie Airborne Observatory sensor. Remote Sens Environ 115(6):1478–1488Google Scholar
  119. Knyazikhin Y, Schull MA, Stenberg P, Mõttus M, Rautiainen M, Yang Y, Marshak A, Carmona PL, Kaufmann RK, Lewis P et al (2013) Hyperspectral remote sensing of foliar nitrogen content. Proc Natl Acad Sci 110(3):E185–E192Google Scholar
  120. Koetz B, Baret F, Poilvé H, Hill J (2005) Use of coupled canopy structure dynamic and radiative transfer models to estimate biophysical canopy characteristics. Remote Sens Environ 95(1):115–124Google Scholar
  121. Kováč D, Malenovský Z, Urban O, Špunda V, Kalina J, Ač A, Kaplan V, Hanuš J (2013) Response of green reflectance continuum removal index to the xanthophyll de-epoxidation cycle in norway spruce needles. J Exp Bot 64(7):1817–1827Google Scholar
  122. Labate D, Ceccherini M, Cisbani A, De Cosmo V, Galeazzi C, Giunti L, Melozzi M, Pieraccini S, Stagi M (2009) The PRISMA payload optomechanical design: a high performance instrument for a new hyperspectral mission. Acta Astronautica 65(9–10):1429–1436Google Scholar
  123. Laurent V, Verhoef W, Damm A, Schaepman M, Clevers J (2013) A Bayesian object-based approach for estimating vegetation biophysical and biochemical variables from APEX at-sensor radiance data. Remote Sens Environ 139:6–17Google Scholar
  124. Laurent V, Schaepman M, Verhoef W, Weyermann J, Chávez R (2014) Bayesian object-based estimation of LAI and chlorophyll from a simulated Sentinel-2 top-of-atmosphere radiance image. Remote Sens Environ 140:318–329Google Scholar
  125. Lazaridis DC, Verbesselt J, Robinson AP (2010) Penalized regression techniques for prediction: a case study for predicting tree mortality using remotely sensed vegetation indices. Can J For Res 41(1):24–34Google Scholar
  126. Lazaro-Gredilla M, Titsias M, Verrelst J, Camps-Valls G (2014) Retrieval of biophysical parameters with heteroscedastic Gaussian processes. IEEE Geosci Remote Sens Lett 11(4):838–842Google Scholar
  127. le Maire G, François C, Dufrene E (2004) Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sens Environ 89(1):1–28Google Scholar
  128. le Maire G, François C, Soudani K, Berveiller D, Pontailler JY, Bréda N, Genet H, Davi H, Dufrêne E (2008) Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass. Remote Sens Environ 112(10):3846–3864Google Scholar
  129. Lee CM, Cable ML, Hook SJ, Green RO, Ustin SL, Mandl DJ, Middleton EM (2015) An introduction to the NASA hyperspectral infrared imager (HyspIRI) mission and preparatory activities. Remote Sens Environ 167:6–19.  https://doi.org/10.1016/j.rse.2015.06.012 (Special Issue on the Hyperspectral Infrared Imager (HyspIRI))Google Scholar
  130. Leonenko G, North P, Los S (2013) Statistical distances and their applications to biophysical parameter estimation: information measures, M-estimates, and minimum contrast methods. Remote Sens 5(3):1355–1388Google Scholar
  131. Lewis P (1999) Three-dimensional plant modelling for remote sensing simulation studies using the botanical plant modelling system. Agronomie 19(3–4):185–210Google Scholar
  132. Lewis P, Muller J (1993) The advanced radiometric ray tracer: ararat for plant canopy reflectance simulation. Int Arch Photogramm Remote Sens 29:26–26Google Scholar
  133. Lewis P, Muller J (1990) Botanical plant modelling for remote sensing simulation studies. In: 10th Annual International on Geoscience and Remote Sensing Symposium, 1990. IGARSS’90.’Remote Sensing Science for the Nineties’, IEEE, pp 1739–1742Google Scholar
  134. Li L, Zhang Q, Huang D (2014a) A review of imaging techniques for plant phenotyping. Sensors (Switzerland) 14(11):20078–20111Google Scholar
  135. Li X, Liu X, Liu M, Wu L (2014b) Random forest algorithm and regional applications of spectral inversion model for estimating canopy nitrogen concentration in rice. Yaogan Xuebao/J Remote Sens 18(4):934–945Google Scholar
  136. Li D, Cheng T, Zhou K, Zheng H, Yao X, Tian Y, Zhu Y, Cao W (2017) WREP: a wavelet-based technique for extracting the red edge position from reflectance spectra for estimating leaf and canopy chlorophyll contents of cereal crops. ISPRS J Photogramm Remote Sens 129:103–117Google Scholar
  137. Liang L, Di L, Zhang L, Deng M, Qin Z, Zhao S, Lin H (2015) Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sens Environ 165:123–134Google Scholar
  138. Liang L, Qin Z, Zhao S, Di L, Zhang C, Deng M, Lin H, Zhang L, Wang L, Liu Z (2016) Estimating crop chlorophyll content with hyperspectral vegetation indices and the hybrid inversion method. Int J Remote Sens 37(13):2923–2949Google Scholar
  139. Lin H, Liang L, Zhang L, Du P (2013) Wheat leaf area index inversion with hyperspectral remote sensing based on support vector regression algorithm. Nongye Gongcheng Xuebao/Trans Chin Soc Agric Eng 29(11):139–146Google Scholar
  140. Liu WY, Pan J (2017) A hyperspectral assessment model for leaf chlorophyll content of Pinus massoniana based on neural network. Chin J Appl Ecol 28(4):1128–1136Google Scholar
  141. Locherer M, Hank T, Danner M, Mauser W (2015) Retrieval of seasonal leaf area index from simulated EnMAP data through optimized LUT-based inversion of the PROSAIL model. Remote Sens 7(8):10321–10346Google Scholar
  142. Luo J, Huang W, Zhao J, Zhang J, Zhao C, Ma R (2013) Detecting aphid density of winter wheat leaf using hyperspectral measurements. IEEE J Sel Top Appl Earth Observ Remote Sens 6(2):690–698Google Scholar
  143. Malenovský Z, Ufer C, Lhotakova Z, Clevers J, Schaepman M, Albrechtova J, Cudlin P (2006) A new hyperspectral index for chlorophyll estimation of a forest canopy: area under curve normalised to maximal band depth between 650 and 725 nm. EARSeL EProc 5(2):161–172Google Scholar
  144. Malenovský Z, Homolová L, Zurita-Milla R, Lukeš P, Kaplan V, Hanuš J, Gastellu-Etchegorry JP, Schaepman ME (2013) Retrieval of spruce leaf chlorophyll content from airborne image data using continuum removal and radiative transfer. Remote Sens Environ 131:85–102Google Scholar
  145. Malenovský Z, Turnbull JD, Lucieer A, Robinson SA (2015) Antarctic moss stress assessment based on chlorophyll content and leaf density retrieved from imaging spectroscopy data. New Phytol 208(2):608–624Google Scholar
  146. Malenovský Z, Lucieer A, King DH, Turnbull JD, Robinson SA (2017) Unmanned aircraft system advances health mapping of fragile polar vegetation. Methods Ecol Evol 8(12):1842–1857Google Scholar
  147. Marabel M, Alvarez-Taboada F (2013) Spectroscopic determination of aboveground biomass in grasslands using spectral transformations, support vector machine and partial least squares regression. Sensors (Switzerland) 13(8):10027–10051Google Scholar
  148. Mariotto I, Thenkabail P, Huete A, Slonecker E, Platonov A (2013) Hyperspectral versus multispectral crop-productivity modeling and type discrimination for the HyspIRI mission. Remote Sens Environ 139:291–305Google Scholar
  149. Marshall M, Thenkabail P (2014) Biomass modeling of four leading world crops using hyperspectral narrowbands in support of HyspIRI mission. Photogramm Eng Remote Sens 80(8):757–772Google Scholar
  150. Matthes J, Knox S, Sturtevant C, Sonnentag O, Verfaillie J, Baldocchi D (2015) Predicting landscape-scale CO2 flux at a pasture and rice paddy with long-term hyperspectral canopy reflectance measurements. Biogeosciences 12(15):4577–4594Google Scholar
  151. Matthews M (2011) A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. Int J Remote Sens 32(21):6855–6899Google Scholar
  152. Meroni M, Colombo R, Panigada C (2004) Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations. Remote Sens Environ 92(2):195–206Google Scholar
  153. Miller J, Hare E, Wu J (1990) Quantitative characterization of the vegetation red edge reflectance 1. An inverted-Gaussian reflectance model. Remote Sens 11(10):1755–1773Google Scholar
  154. Miphokasap P, Honda K, Vaiphasa C, Souris M, Nagai M (2012) Estimating canopy nitrogen concentration in sugarcane using field imaging spectroscopy. Remote Sens 4(6):1651–1670Google Scholar
  155. Mitchell JJ, Glenn NF, Sankey TT, Derryberry DR, Germino MJ (2012) Remote sensing of sagebrush canopy nitrogen. Remote Sens Environ 124:217–223Google Scholar
  156. Montesano P, Rosette J, Sun G, North P, Nelson R, Dubayah R, Ranson K, Kharuk V (2015) The uncertainty of biomass estimates from modeled ICESat-2 returns across a boreal forest gradient. Remote Sens Environ 158:95–109Google Scholar
  157. Morton DC, Nagol J, Carabajal CC, Rosette J, Palace M, Cook BD, Vermote EF, Harding DJ, North PR (2014) Amazon forests maintain consistent canopy structure and greenness during the dry season. Nature 506(7487):221–224Google Scholar
  158. Mulder V, de Bruin S, Schaepman M, Mayr T (2011) The use of remote sensing in soil and terrain mapping—a review. Geoderma 162(1–2):1–19Google Scholar
  159. Mutanga O, Kumar L (2007) Estimating and mapping grass phosphorus concentration in an African savanna using hyperspectral image data. Int J Remote Sens 28(21):4897–4911Google Scholar
  160. Mutanga O, Skidmore AK (2004) Narrow band vegetation indices overcome the saturation problem in biomass estimation. Int J Remote Sens 25(19):3999–4014Google Scholar
  161. Mutanga O, Skidmore AK, Kumar L, Ferwerda J (2005) Estimating tropical pasture quality at canopy level using band depth analysis with continuum removal in the visible domain. Int J Remote Sens 26(6):1093–1108Google Scholar
  162. Myneni R, Maggion S, Iaquinta J, Privette J, Gobron N, Pinty B, Kimes D, Verstraete M, Williams D (1995) Optical remote sensing of vegetation: modeling, caveats, and algorithms. Remote Sens Environ 51(1):169–188Google Scholar
  163. Neinavaz E, Skidmore A, Darvishzadeh R, Groen T (2016) Retrieval of leaf area index in different plant species using thermal hyperspectral data. ISPRS J Photogramm Remote Sens 119:390–401Google Scholar
  164. Neumann C, Förster M, Kleinschmit B, Itzerott S (2016) Utilizing a PLSR-based band-selection procedure for spectral feature characterization of floristic gradients. IEEE J Sel Top Appl Earth Observ Remote Sens 9(9):3982–3996Google Scholar
  165. North P (1996) Three-dimensional forest light interaction model using a monte carlo method. IEEE Trans Geosci Remote Sens 34(4):946–956Google Scholar
  166. North P, Rosette J, Suárez J, Los S (2010) A Monte Carlo radiative transfer model of satellite waveform LiDAR. Int J Remote Sens 31(5):1343–1358Google Scholar
  167. Ollinger S (2011) Sources of variability in canopy reflectance and the convergent properties of plants. New Phytol 189(2):375–394Google Scholar
  168. Omari K, White H, Staenz K, King D (2013) Retrieval of forest canopy parameters by inversion of the proflair leaf-canopy reflectance model using the lut approach. IEEE J Sel Top Appl Earth Observ Remote Sens 6(2):715–723Google Scholar
  169. Oppelt N, Mauser W (2004) Hyperspectral monitoring of physiological parameters of wheat during a vegetation period using avis data. Int J Remote Sens 25(1):145–159Google Scholar
  170. Paruelo J, Tomasel F (1997) Prediction of functional characteristics of ecosystems: a comparison of artificial neural networks and regression models. Ecol Model 98(2–3):173–186Google Scholar
  171. Pasqualotto N, Delegido J, Wittenberghe SV, Verrelst J, Rivera JP, Moreno J (2018) Retrieval of canopy water content of different crop types with two new hyperspectral indices: water absorption area index and depth water index. Int J Appl Earth Observ Geoinf 67:69–78Google Scholar
  172. Peng Y, Huang H, Wang W, Wu J, Wang X (2011) Rapid detection of chlorophyll content in corn leaves by using least squares-support vector machines and hyperspectral images. Jiangsu Daxue Xuebao (Ziran Kexue Ban)/J Jiangsu Univ (Nat Sci Edn) 32(2):125–128+174Google Scholar
  173. Penuelas J, Gamon JA, Fredeen AL, Merino J, Field CB (1994) Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sens Environ 48(2):135–146Google Scholar
  174. Pham T, Yoshino K, Bui D (2017) Biomass estimation of Sonneratia caseolaris (l.) Engler at a coastal area of Hai Phong city (Vietnam) using ALOS-2 PALSAR imagery and GIS-based multi-layer perceptron neural networks. GISci Remote Sens 54(3):329–353Google Scholar
  175. Pinty B, Gobron N, Widlowski JL, Gerstl S, Verstraete M, Antunes M, Bacour C, Gascon F, Gastellu JP, Goel N, Jacquemoud S, North P, Qin W, Thompson R (2001) Radiation transfer model intercomparison (RAMI) exercise. J Geophys Res D Atmos 106(D11):11937–11956Google Scholar
  176. Pinty B, Widlowski JL, Taberner M, Gobron N, Verstraete M, Disney M, Gascon F, Gastellu JP, Jiang L, Kuusk A, Lewis P, Li X, Ni-Meister W, Nilson T, North P, Qin W, Su L, Tang S, Thompson R, Verhoef W, Wang H, Wang J, Yan G, Zang H (2004) Radiation Transfer Model Intercomparison (RAMI) exercise: results from the second phase. J Geophys Res D Atmos 109(6):D06210Google Scholar
  177. Pôças I, Gonçalves J, Costa P, Gonçalves I, Pereira L, Cunha M (2017) Hyperspectral-based predictive modelling of grapevine water status in the Portuguese Douro wine region. Int J Appl Earth Observ Geoinf 58:177–190Google Scholar
  178. Preidl S, Doktor D (2011) Comparison of radiative transfer model inversions to estimate vegetation physiological status based on hyperspectral data​. 3rd workshop on hyperspectral image and signal processing: evolution in remote sensing (WHISPERS)Google Scholar
  179. Pu R, Gong P, Biging GS, Larrieu MR (2003) Extraction of red edge optical parameters from Hyperion data for estimation of forest leaf area index. IEEE Trans Geosci Remote Sens 41(4):916–921Google Scholar
  180. Pullanagari R, Kereszturi G, Yule I (2016) Mapping of macro and micro nutrients of mixed pastures using airborne AisaFENIX hyperspectral imagery. ISPRS J Photogramm Remote Sens 117:1–10Google Scholar
  181. Ramoelo A, Skidmore AK, Schlerf M, Mathieu R, Heitkönig IM (2011) Water-removed spectra increase the retrieval accuracy when estimating savanna grass nitrogen and phosphorus concentrations. ISPRS J Photogramm Remote Sens 66(4):408–417Google Scholar
  182. Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. The MIT Press, New YorkGoogle Scholar
  183. Rivard B, Feng J, Gallie A, Sanchez-Azofeifa A (2008) Continuous wavelets for the improved use of spectral libraries and hyperspectral data. Remote Sens Environ 112(6):2850–2862Google Scholar
  184. Rivera Caicedo J, Verrelst J, Muñoz-Marí J, Moreno J, Camps-Valls G (2014) Toward a semiautomatic machine learning retrieval of biophysical parameters. IEEE J Sel Top Appl Earth Observ Remote Sens 7(4):1249–1259Google Scholar
  185. Rivera J, Verrelst J, Leonenko G, Moreno J (2013) Multiple cost functions and regularization options for improved retrieval of leaf chlorophyll content and LAI through inversion of the PROSAIL model. Remote Sens 5(7):3280–3304Google Scholar
  186. Rivera J, Verrelst J, Delegido J, Veroustraete F, Moreno J (2014) On the semi-automatic retrieval of biophysical parameters based on spectral index optimization. Remote Sens 6(6):4924–4951Google Scholar
  187. Rivera JP, Verrelst J, Gómez-Dans J, Muñoz Marí J, Moreno J, Camps-Valls G (2015) An emulator toolbox to approximate radiative transfer models with statistical learning. Remote Sens 7(7):9347Google Scholar
  188. Rivera-Caicedo JP, Verrelst J, Muñoz-Marí J, Camps-Valls G, Moreno J (2017) Hyperspectral dimensionality reduction for biophysical variable statistical retrieval. ISPRS J Photogramm Remote Sens 132:88–101Google Scholar
  189. Roelofsen HD, Kooistra L, van Bodegom PM, Verrelst J, Krol J, Witte JPM (2014) Mapping a priori defined plant associations using remotely sensed vegetation characteristics. Remote Sens Environ 140:639–651Google Scholar
  190. Roth K, Roberts D, Dennison P, Alonzo M, Peterson S, Beland M (2015) Differentiating plant species within and across diverse ecosystems with imaging spectroscopy. Remote Sens Environ 167:135–151Google Scholar
  191. Saich P, Lewis P, Disney M, Thackrah G (2002) Comparison of Hymap/E-SAR data with models for optial reflectance and microwave scattering from vegetation canopies. Retriev Bio Geo Phys Parameters SAR Data Land Appl 475:75–80Google Scholar
  192. Sanches I, Souza Filho C, Kokaly R (2014) Spectroscopic remote sensing of plant stress at leaf and canopy levels using the chlorophyll 680 nm absorption feature with continuum removal. ISPRS J Photogramm Remote Sens 97:111–122Google Scholar
  193. Scafutto R, de Souza Filho C, Rivard B (2016) Characterization of mineral substrates impregnated with crude oils using proximal infrared hyperspectral imaging. Remote Sens Environ 179:116–130Google Scholar
  194. Schlerf M, Atzberger C (2006) Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data. Remote Sens Environ 100(3):281–294Google Scholar
  195. Schlerf M, Atzberger C, Hill J (2005) Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. Remote Sens Environ 95(2):177–194Google Scholar
  196. Schlerf M, Atzberger C, Hill J, Buddenbaum H, Werner W, Schüler G (2010) Retrieval of chlorophyll and nitrogen in Norway spruce (Picea abies L. Karst.) using imaging spectroscopy. Int J Appl Earth Observ Geoinf 12(1):17–26Google Scholar
  197. Shiklomanov A, Dietze M, Viskari T, Townsend P, Serbin S (2016) Quantifying the influences of spectral resolution on uncertainty in leaf trait estimates through a Bayesian approach to RTM inversion. Remote Sens Environ 183:226–238Google Scholar
  198. Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ 81(2–3):337–354Google Scholar
  199. Stimson HC, Breshears DD, Ustin SL, Kefauver SC (2005) Spectral sensing of foliar water conditions in two co-occurring conifer species: Pinus edulis and Juniperus monosperma. Remote Sens Environ 96(1):108–118Google Scholar
  200. Suykens J, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300Google Scholar
  201. Thenkabail P, Smith R, De Pauw E (2000) Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens Environ 71(2):158–182Google Scholar
  202. Tian Y, Yao X, Yang J, Cao W, Zhu Y (2011) Extracting red edge position parameters from ground- and space-based hyperspectral data for estimation of canopy leaf nitrogen concentration in rice. Plant Product Sci 14(3):270–281Google Scholar
  203. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodological) 58:267–288Google Scholar
  204. Tuia D, Verrelst J, Alonso L, Pérez-Cruz F, Camps-Valls G (2011) Multioutput support vector regression for remote sensing biophysical parameter estimation. IEEE Geosci Remote Sens Lett 8(4):804–808Google Scholar
  205. Tuia D, Volpi M, Verrelst J, Camps-Valls G (2018) Advances in kernel machines for image classification and biophysical parameter retrieval. In: Moser G, Zerubia J (eds) Mathematical models for remote sensing image processing. Signals and communication technology. Springer, Cham, pp 399–441Google Scholar
  206. Uno Y, Prasher S, Lacroix R, Goel P, Karimi Y, Viau A, Patel R (2005) Artificial neural networks to predict corn yield from compact airborne spectrographic imager data. Comput Electron Agric 47(2):149–161Google Scholar
  207. Vaglio Laurin G, Cheung-Wai Chan J, Chen Q, Lindsell J, Coomes D, Guerriero L, Del Frate F, Miglietta F, Valentini R (2014) Biodiversity mapping in a tropical West African forest with airborne hyperspectral data. PLoS ONE 9(6):e97910Google Scholar
  208. Van Der Tol C, Verhoef W, Timmermans J, Verhoef A, Su Z (2009) An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance. Biogeosciences 6(12):3109–3129Google Scholar
  209. Van Der Tol C, Berry J, Campbell P, Rascher U (2014) Models of fluorescence and photosynthesis for interpreting measurements of solar-induced chlorophyll fluorescence. J Geophys Res Biogeosci 119:2312–2327Google Scholar
  210. van der Tol C, Rossini M, Cogliati S, Verhoef W, Colombo R, Rascher U, Mohammed G (2016) A model and measurement comparison of diurnal cycles of sun-induced chlorophyll fluorescence of crops. Remote Sens Environ 186:663–677Google Scholar
  211. Vapnik V, Golowich S, Smola A (1997) Support vector method for function approximation, regression estimation, and signal processing. Adv Neural Inf Process Syst 9:281–287Google Scholar
  212. Verhoef W (1984a) Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote Sens Environ 16(2):125–141Google Scholar
  213. Verhoef W (1984b) Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote Sens Environ 16(2):125–141Google Scholar
  214. Verhoef W (1985) Earth observation modeling based on layer scattering matrices. Remote Sens Environ 17(2):165–178Google Scholar
  215. Verrelst J, Schaepman M, Koetz B, Kneubuhler M (2008) Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data. Remote Sens Environ 112(5):2341–2353Google Scholar
  216. Verrelst J, Schaepman ME, Malenovský Z, Clevers JGPW (2010) Effects of woody elements on simulated canopy reflectance: implications for forest chlorophyll content retrieval. Remote Sens Environ 114(3):647–656Google Scholar
  217. Verrelst J, Alonso L, Camps-Valls G, Delegido J, Moreno J (2012a) Retrieval of vegetation biophysical parameters using Gaussian process techniques. IEEE Trans Geosci Remote Sens 50(5 PART 2):1832–1843Google Scholar
  218. Verrelst J, Alonso L, Camps-Valls G, Delegido J, Moreno J (2012b) Retrieval of vegetation biophysical parameters using Gaussian process techniques. IEEE Trans Geosci Remote Sens 50(5 PART 2):1832–1843Google Scholar
  219. Verrelst J, Romijn E, Kooistra L (2012c) Mapping vegetation density in a heterogeneous river floodplain ecosystem using pointable CHRIS/PROBA data. Remote Sens 4(9):2866–2889Google Scholar
  220. Verrelst J, Alonso L, Rivera Caicedo J, Moreno J, Camps-Valls G (2013a) Gaussian process retrieval of chlorophyll content from imaging spectroscopy data. IEEE J Sel Top Appl Earth Observ Remote Sens 6(2):867–874Google Scholar
  221. Verrelst J, Rivera J, Moreno J, Camps-Valls G (2013b) Gaussian processes uncertainty estimates in experimental Sentinel-2 LAI and leaf chlorophyll content retrieval. ISPRS J Photogramm Remote Sens 86:157–167Google Scholar
  222. Verrelst J, Rivera J, Leonenko G, Alonso L, Moreno J (2014) Optimizing LUT-based RTM inversion for semiautomatic mapping of crop biophysical parameters from sentinel-2 and -3 data: role of cost functions. IEEE Trans Geosci Remote Sens 52(1):257–269Google Scholar
  223. Verrelst J, Camps-Valls G, Muñoz Marí J, Rivera J, Veroustraete F, Clevers J, Moreno J (2015) Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties—a review. ISPRS J Photogramm Remote Sens 108:273–290Google Scholar
  224. Verrelst J, Dethier S, Rivera JP, Munoz-Mari J, Camps-Valls G, Moreno J (2016a) Active learning methods for efficient hybrid biophysical variable retrieval. IEEE Geosci Remote Sens Lett 13(7):1012–1016Google Scholar
  225. Verrelst J, Rivera JP, Gitelson A, Delegido J, Moreno J, Camps-Valls G (2016b) Spectral band selection for vegetation properties retrieval using Gaussian processes regression. Int J Appl Earth Observ Geoinf 52:554–567Google Scholar
  226. Verrelst J, Sabater N, Rivera JP, Muñoz Marí J, Vicent J, Camps-Valls G, Moreno J (2016c) Emulation of leaf, canopy and atmosphere radiative transfer models for fast global sensitivity analysis. Remote Sens 8(8):673Google Scholar
  227. Verrelst J, Rivera Caicedo J, Muñoz Marí J, Camps-Valls G, Moreno J (2017) SCOPE-based emulators for fast generation of synthetic canopy reflectance and sun-induced fluorescence Spectra. Remote Sens 9(9):927Google Scholar
  228. Vilfan N, van der Tol C, Muller O, Rascher U, Verhoef W (2016) Fluspect-B: a model for leaf fluorescence, reflectance and transmittance spectra. Remote Sens Environ 186:596–615Google Scholar
  229. Vohland M, Mader S, Dorigo W (2010) Applying different inversion techniques to retrieve stand variables of summer barley with PROSPECT + SAIL. Int J Appl Earth Observ Geoinf 12(2):71–80Google Scholar
  230. Wang F, Huang J, Lou Z (2011) A comparison of three methods for estimating leaf area index of paddy rice from optimal hyperspectral bands. Precis Agric 12(3):439–447Google Scholar
  231. Wang F, Huang J, Wang Y, Liu Z, Peng D, Cao F (2013) Monitoring nitrogen concentration of oilseed rape from hyperspectral data using radial basis function. Int J Digital Earth 6(6):550–562Google Scholar
  232. Wang J, Wang T, Skidmore A, Shi T, Wu G (2015) Evaluating different methods for grass nutrient estimation from canopy hyperspectral reflectance. Remote Sens 7(5):5901–5917Google Scholar
  233. Wang B, Chen J, Ju W, Qiu F, Zhang Q, Fang M, Chen F (2017a) Limited effects of water absorption on reducing the accuracy of leaf nitrogen estimation. Remote Sens 9(3):291Google Scholar
  234. Wang J, Shen C, Liu N, Jin X, Fan X, Dong C, Xu Y (2017b) Non-destructive evaluation of the leaf nitrogen concentration by in-field visible/near-infrared spectroscopy in pear orchards. Sensors (Switzerland) 17(3):538Google Scholar
  235. Widlowski JL, Pinty B, Clerici M, Dai Y, De Kauwe M, De Ridder K, Kallel A, Kobayashi H, Lavergne T, Ni-Meister W, Olchev A, Quaife T, Wang S, Yang W, Yang Y, Yuan H (2011) RAMI4PILPS: an intercomparison of formulations for the partitioning of solar radiation in land surface models. J Geophys Res G Biogeosci.  https://doi.org/10.1029/2010JG001511 Google Scholar
  236. Widlowski JL, Taberner M, Pinty B, Bruniquel-Pinel V, Disney M, Fernandes R, Gastellu-Etchegorry JP, Gobron N, Kuusk A, Lavergne T, Leblanc S, Lewis P, Martin E, Mättus M, North P, Qin W, Robustelli M, Rochdi N, Ruiloba R, Soler C, Thompson R, Verhoef W, Verstraete M, Xie D (2007) Third radiation transfer model intercomparison (RAMI) exercise: documenting progress in canopy reflectance models. J Geophys Res D Atmos 112(9):D09111Google Scholar
  237. Widlowski JL, Mio C, Disney M, Adams J, Andredakis I, Atzberger C, Brennan J, Busetto L, Chelle M, Ceccherini G et al (2015) The fourth phase of the radiative transfer model intercomparison (RAMI) exercise: actual canopy scenarios and conformity testing. Remote Sens Environ 169:418–437Google Scholar
  238. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2(1–3):37–52Google Scholar
  239. Xue J, Su B (2017) Significant remote sensing vegetation indices: a review of developments and applications. J Sens.  https://doi.org/10.1155/2017/1353691 Google Scholar
  240. Yang X, Huang J, Wu Y, Wang J, Wang P, Wang X, Huete A (2011) Estimating biophysical parameters of rice with remote sensing data using support vector machines. Sci China Life Sci 54(3):272–281Google Scholar
  241. Yang P, Verhoef W, van der Tol C (2017) The mSCOPE model: a simple adaptation to the SCOPE model to describe reflectance, fluorescence and photosynthesis of vertically heterogeneous canopies. Remote Sens Environ 201:1–11Google Scholar
  242. Yao X, Huang Y, Shang G, Zhou C, Cheng T, Tian Y, Cao W, Zhu Y (2015) Evaluation of six algorithms to monitor wheat leaf nitrogen concentration. Remote Sens 7(11):14939–14966Google Scholar
  243. Ye X, Sakai K, Manago M, Asada SI, Sasao A (2007) Prediction of citrus yield from airborne hyperspectral imagery. Precis Agric 8(3):111–125Google Scholar
  244. Yi Q, Jiapaer G, Chen J, Bao A, Wang F (2014) Different units of measurement of carotenoids estimation in cotton using hyperspectral indices and partial least square regression. ISPRS J Photogramm Remote Sens 91:72–84Google Scholar
  245. Yin T, Lauret N, Gastellu-Etchegorry JP (2016) Simulation of satellite, airborne and terrestrial LiDAR with DART (II): ALS and TLS multi-pulse acquisitions, photon counting, and solar noise. Remote Sens Environ 184:454–468Google Scholar
  246. Yue J, Yang G, Li C, Li Z, Wang Y, Feng H, Xu B (2017) Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models. Remote Sens 9(7):708Google Scholar
  247. Zandler H, Brenning A, Samimi C (2015) Quantifying dwarf shrub biomass in an arid environment: comparing empirical methods in a high dimensional setting. Remote Sens Environ 158:140–155Google Scholar
  248. Zarco-Tejada P, Miller J, Noland T, Mohammed G, Sampson P (2001) Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Trans Geosci Remote Sens 39(7):1491–1507Google Scholar
  249. Zarco-Tejada P, Miller J, Mohammed G, Noland T, Sampson P (2002) Vegetation stress detection through chlorophyll+ estimation and fluorescence effects on hyperspectral imagery. J Environ Qual 31(5):1433–1441Google Scholar
  250. Zhang S, Wang Q (2015) Inverse retrieval of chlorophyll from reflected spectra for assimilating branches of drought-tolerant Tamarix ramosissima. IEEE J Sel Top Appl Earth Observ Remote Sens 8(4):1498–1505Google Scholar
  251. Zhang Y, Chen J, Miller J, Noland T (2008) Leaf chlorophyll content retrieval from airborne hyperspectral remote sensing imagery. Remote Sens Environ 112(7):3234–3247Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Jochem Verrelst
    • 1
    Email author
  • Zbyněk Malenovský
    • 2
    • 3
    • 4
  • Christiaan Van der Tol
    • 5
  • Gustau Camps-Valls
    • 1
  • Jean-Philippe Gastellu-Etchegorry
    • 6
  • Philip Lewis
    • 7
    • 8
  • Peter North
    • 9
  • Jose Moreno
    • 1
  1. 1.Image Processing Laboratory (IPL), Parc CientíficUniversitat de ValènciaValènciaSpain
  2. 2.Surveying and Spatial Sciences Group, School of Technology, Environments and DesignUniversity of TasmaniaHobartAustralia
  3. 3.Remote Sensing DepartmentGlobal Change Research Institute CASBrnoCzech Republic
  4. 4.USRA/GESTAR, Biospheric Sciences LaboratoryNASA Goddard Space Flight CenterGreenbeltUSA
  5. 5.Department of Water Resources, Faculty ITCUniversity of TwenteEnschedeThe Netherlands
  6. 6.Centre d’Etudes Spatiales de la Biosphère - UPS, CNES, CNRS, IRDUniversité de ToulouseToulouse Cedex 9France
  7. 7.Department of GeographyUniversity College LondonLondonUK
  8. 8.National Centre for Earth Observation, Department of Physics and AstronomyThe University of LeicesterLeicesterUK
  9. 9.Department of GeographySwansea UniversitySwanseaUK

Personalised recommendations