Surveys in Geophysics

, Volume 39, Issue 1, pp 99–123 | Cite as

Azimuthal Seismic Amplitude Variation with Offset and Azimuth Inversion in Weakly Anisotropic Media with Orthorhombic Symmetry

  • Xinpeng Pan
  • Guangzhi Zhang
  • Xingyao Yin


Seismic amplitude variation with offset and azimuth (AVOaz) inversion is well known as a popular and pragmatic tool utilized to estimate fracture parameters. A single set of vertical fractures aligned along a preferred horizontal direction embedded in a horizontally layered medium can be considered as an effective long-wavelength orthorhombic medium. Estimation of Thomsen’s weak-anisotropy (WA) parameters and fracture weaknesses plays an important role in characterizing the orthorhombic anisotropy in a weakly anisotropic medium. Our goal is to demonstrate an orthorhombic anisotropic AVOaz inversion approach to describe the orthorhombic anisotropy utilizing the observable wide-azimuth seismic reflection data in a fractured reservoir with the assumption of orthorhombic symmetry. Combining Thomsen’s WA theory and linear-slip model, we first derive a perturbation in stiffness matrix of a weakly anisotropic medium with orthorhombic symmetry under the assumption of small WA parameters and fracture weaknesses. Using the perturbation matrix and scattering function, we then derive an expression for linearized PP-wave reflection coefficient in terms of P- and S-wave moduli, density, Thomsen’s WA parameters, and fracture weaknesses in such an orthorhombic medium, which avoids the complicated nonlinear relationship between the orthorhombic anisotropy and azimuthal seismic reflection data. Incorporating azimuthal seismic data and Bayesian inversion theory, the maximum a posteriori solutions of Thomsen’s WA parameters and fracture weaknesses in a weakly anisotropic medium with orthorhombic symmetry are reasonably estimated with the constraints of Cauchy a priori probability distribution and smooth initial models of model parameters to enhance the inversion resolution and the nonlinear iteratively reweighted least squares strategy. The synthetic examples containing a moderate noise demonstrate the feasibility of the derived orthorhombic anisotropic AVOaz inversion method, and the real data illustrate the inversion stabilities of orthorhombic anisotropy in a fractured reservoir.


AVOaz inversion Orthorhombic medium Thomsen’s WA parameters Fracture weaknesses Bayesian inversion theory 



We would like to express our gratitude to the sponsorship of National Natural Science Foundation of China (41674130), National Basic Research Program of China (973 Program, 2014CB239201), National Grand Project for Science and Technology (2016ZX05027004-001, 2016ZX05002005-09HZ), and the Fundamental Research Funds for the Central Universities. We are very grateful to an anonymous associate, and Alexey Stovas for their constructive suggestions.


  1. Bachrach R (2015) Uncertainty and nonuniqueness in linearized AVAZ for orthorhombic media. Lead Edge 34:1048–1056CrossRefGoogle Scholar
  2. Backus GE (1962) Long-wave elastic anisotropy produced by horizontal layering. Geophysics 67:4427–4440CrossRefGoogle Scholar
  3. Bakulin A, Grechka V, Tsvankin I (2000) Estimation of fracture parameters from reflection seismic data—part II: fractured models with orthorhombic symmetry. Geophysics 65:1803–1817CrossRefGoogle Scholar
  4. Bakulin A, Grechka V, Tsvankin I (2002) Seismic inversion for the parameters of two orthogonal fractures sets in a VTI background medium. Geophysics 67:292–299CrossRefGoogle Scholar
  5. Chen H, Zhang G, Ji Y, Yin X (2017) Azimuthal seismic amplitude difference inversion for fracture weakness. Pure appl Geophys 174:279–291CrossRefGoogle Scholar
  6. Downton J (2005) Seismic parameter estimation from AVO inversion. Ph.D. Thesis, University of CalgaryGoogle Scholar
  7. Downton JE, Roure B (2015) Interpreting azimuthal Fourier coefficients for anisotropic and fracture parameters. Interpretation 3:ST9–ST27CrossRefGoogle Scholar
  8. Hampson DP, Russell BH, Bankhead B (2005) Simultaneous inversion of pre-stack seismic data. In: SEG technical program expanded abstracts, pp 1633–1637Google Scholar
  9. Hill R (1952) The elastic behavior of crystalline aggregate. Proc Phys Soc 65:349–354CrossRefGoogle Scholar
  10. Hornby BE, Schwartz LM, Hudson JA (1994) Anisotropic effective medium modeling of the elastic properties of shales. Geophysics 59:1570–1583CrossRefGoogle Scholar
  11. Hudson JA (1981) Wave speeds and attenuation of elastic waves in material containing cracks. Geophys J Int 64:133–150CrossRefGoogle Scholar
  12. Mallick S, Craft KL, Meister LJ, Chambers RE (1998) Determination of the principal directions of azimuthal anisotropy from P-wave seismic data. Geophysics 63:692–706CrossRefGoogle Scholar
  13. Pan X, Zhang G, Chen H, Yin X (2017a) McMC-based AVAZ direct inversion for fracture weaknesse. J Appl Geophys 138:50–61CrossRefGoogle Scholar
  14. Pan X, Zhang G, Chen H, Yin X (2017b) McMC-based nonlinear EIVAZ inversion driven by rock physics. J Geophys Eng 14:368–379CrossRefGoogle Scholar
  15. Pšenčik I, Martins JL (2001) Properties of weak contrast PP reflection/transmission coefficients for weakly anisotropic elastic media. Stud Geophys Geod 45:176–199CrossRefGoogle Scholar
  16. Pšenčik I, Vavryčuk V (1998) Weak contrast PP-wave displacement R/T coefficients in weakly anisotropic elastic media. Pure Appl Geophys 151:699–718CrossRefGoogle Scholar
  17. Rüger A (1997) P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry. Geophysics 62:713–722CrossRefGoogle Scholar
  18. Rüger A (1998) Variation of P-wave reflectivity with offset and azimuth in anisotropic media. Geophysics 63:935–947CrossRefGoogle Scholar
  19. Sacchi MD, Ulrych TJ (1995) High-resolution velocity gathers and offset space reconstruction. Geophysics 60:1169–1177CrossRefGoogle Scholar
  20. Scales JA, Smith ML (1994) Introductory geophysical inverse theory. Samizdat PressGoogle Scholar
  21. Schoenberg M, Douma J (1988) Elastic wave propagation in media with parallel fractures and aligned cracks. Geophys Prospect 36:571–590CrossRefGoogle Scholar
  22. Schoenberg M, Helbig K (1997) Orthorhombic media: modeling elastic wave behavior in a vertically fractured earth. Geophysics 62:1954–1957CrossRefGoogle Scholar
  23. Schoenberg M, Muir F (1989) A calculus for finely layered anisotropic media. Geophysics 54:581–589CrossRefGoogle Scholar
  24. Shaw RK, Sen MK (2004) Born integral, stationary phase and linearized reflection coefficients in weak anisotropic media. Geophys J Int 158:225–238CrossRefGoogle Scholar
  25. Shaw RK, Sen MK (2006) Use of AVOAZ data to estimate fluid indicator in a vertically fractured medium. Geophysics 71:C15–C24CrossRefGoogle Scholar
  26. Thomsen L (1986) Weak elastic anisotropy. Geophysics 51:1954–1966CrossRefGoogle Scholar
  27. Tsvankin L (1997) Anisotropic parameters and P-wave velocity for orthorhombic media. Geophysics 62:1292–1309CrossRefGoogle Scholar
  28. Zong Z, Yin X, Wu G (2012) AVO inversion and poroelasticity with P- and S-wave moduli. Geophysics 77:29–36CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.School of SciencesChina University of Petroleum (East China)QingdaoChina
  2. 2.Laboratory for Marine Mineral ResourcesQingdao National Laboratory for Marine Science and TechnologyQingdaoChina

Personalised recommendations