Surveys in Geophysics

, Volume 38, Issue 3, pp 549–570 | Cite as

Definition and Proposed Realization of the International Height Reference System (IHRS)

  • Johannes IhdeEmail author
  • Laura Sánchez
  • Riccardo Barzaghi
  • Hermann Drewes
  • Christoph Foerste
  • Thomas Gruber
  • Gunter Liebsch
  • Urs Marti
  • Roland Pail
  • Michael Sideris


Studying, understanding and modelling global change require geodetic reference frames with an order of accuracy higher than the magnitude of the effects to be actually studied and with high consistency and reliability worldwide. The International Association of Geodesy, taking care of providing a precise geodetic infrastructure for monitoring the Earth system, promotes the implementation of an integrated global geodetic reference frame that provides a reliable frame for consistent analysis and modelling of global phenomena and processes affecting the Earth’s gravity field, the Earth’s surface geometry and the Earth’s rotation. The definition, realization, maintenance and wide utilization of the International Terrestrial Reference System guarantee a globally unified geometric reference frame with an accuracy at the millimetre level. An equivalent high-precision global physical reference frame that supports the reliable description of changes in the Earth’s gravity field (such as sea level variations, mass displacements, processes associated with geophysical fluids) is missing. This paper addresses the theoretical foundations supporting the implementation of such a physical reference surface in terms of an International Height Reference System and provides guidance for the coming activities required for the practical and sustainable realization of this system. Based on conceptual approaches of physical geodesy, the requirements for a unified global height reference system are derived. In accordance with the practice, its realization as the International Height Reference Frame is designed. Further steps for the implementation are also proposed.


World height system Global vertical reference system Geodetic global reference frame International Height Reference System and Frame 


  1. Amjadiparvar B, Rangelova E, Sideris MG (2016) The GBVP approach for vertical datum unification—recent results in North America. J Geod 90(1):45–63CrossRefGoogle Scholar
  2. Angermann D, Gerstl M, Sánchez L, Gruber T, Hugentobler U, Steigenberger P, Heinkelmann R (2016) GGOS Bureau of Products and Standards: Inventory of standards and conventions for geodesy. IAG Symposia 143:571–577. doi: 10.1007/1345_2015_165
  3. Balasubramania N (1994) Definition and realization of a global vertical datum. Ohio State University, Department of Geodetic Science and Surveying. OSU Report No. 427Google Scholar
  4. Burša M, Kouba J, Radej K, True S, Vatrt V, Vojtíšková M (1998) Mean Earth’s equipotential surface from TOPEX/Poseidon altimetry. Studia geoph et geod 42:456–466. doi: 10.1023/A:1023356803773 CrossRefGoogle Scholar
  5. Drewes H, Kuglitsch F, Ádám J, Rózsa S (2016) The geodesist’s handbook 2016. J Geod 90:907–1205. doi: 10.1007/s00190-016-0948-z CrossRefGoogle Scholar
  6. Ekman M (1989) Impacts of geodynamic phenomena on systems for heights and gravity. Bull Géod 63:281–296CrossRefGoogle Scholar
  7. Ekman M (1996) The permanent problem of the permanent tide. What to do in the geodetic reference systems? Bull Inf Marées Terrestres 125:9508–9513Google Scholar
  8. Förste Ch, Bruinsma SL, Abrikosov O, Lemoine JM, Marty JC, Flechtner F, Balmino G, Barthelmes F, Biancale R (2014): EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services. doi: 10.5880/icgem.2015.1
  9. Gerlach C, Rummel R (2013) Global height system unification with GOCE: a simulation study on the indirect bias term in the GBVP approach. J Geod 87(1):57–67. doi: 10.1007/s00190-012-0579-y CrossRefGoogle Scholar
  10. Grigoriadis VN, Kotsakis C, Tziavos IN, Vergos GS (2014) Estimation of the reference geopotential value for the local vertical datum of continental Greece using EGM08 and GPS/leveling data. In: Marti U (ed) Gravity, geoid and height systems. IAG symposia series, vol 141, pp 249–255. doi: 10.1007/978-3-319-10837-7_32
  11. Groten E (1999) Report of the international association of geodesy special commission SC3: fundamental constants. XXII IAG General Assembly, BirminghamGoogle Scholar
  12. Groten E (2004) Fundamental parameters and current (2004) best estimates of the paramaters of common relevance to Astronomy, Geodesy and Geodynamics, The Geodesist’s Handbook 2004. J Geod 77:724–731. doi: 10.1007/s00190-003-0373-y CrossRefGoogle Scholar
  13. Gruber TH, Gerlach C, Haagmans R (2012) Intercontinental height datum connection with GOCE and GPS-levelling data. J Geod Sci 2(4):270–280. doi: 10.2478/v10156-012-0001-y Google Scholar
  14. Heck B (2004) Problems in the definition of vertical reference frames. In: IAG symposia series, vol 127, pp 164–173. doi: 10.1007/978-3-662-10735-5_22
  15. Heck B, Rummel R (1990) Strategies for solving the vertical datum problem using terrestrial and satellite geodetic data. In: IAG symposia series, vol 104, pp 116–128. doi: 10.1007/978-1-4684-7098-7_14
  16. Hofmann-Wellenhof B, Moritz H (2005) Physical geodesy. Springer, Wien, New YorkGoogle Scholar
  17. IAG (2016) Description of the global geodetic reference frame; position paper adopted by the IAG Executive Committee, April, 2016.
  18. Ihde J (2007) Inter-commission project 1.2: vertical reference frames. Final report for the period 2003–2007. In: Drewes H, Hornik H (eds) IAG Commission 1—reference frames, Report 2003–2007. DGFI, Munich. Bulletin No. 20, pp 57–59Google Scholar
  19. Ihde J, Augath W (2000) The vertical reference system for Europe. Presented at the EUREF Symposium in Tromsø, June 22–24, 2000. In: Veröffentlichung der Bayerischen Kommission für die Internationale Erdmessung. München, 2000, Heft Nr. 61, pp 99–110Google Scholar
  20. Ihde J, Augath W (2002) The European vertical reference system (EVRS), its relation to a world height system and to ITRS. In: IAG 2001 scientific assembly, Budapest, Hungary, IAG symposia, vol 125, pp 78–83Google Scholar
  21. Ihde J, Sánchez L (2005) A unified global height reference system as a basis for IGGOS. J Geodyn 40:400–413. doi: 10.1016/j.jog.2005.06.015 CrossRefGoogle Scholar
  22. Ihde J, Amos M, Heck B, Kersley B, Schöne T, Sánchez L, Drewes H (2007) Conventions for the definitions and realization of a conventional vertical reference system (CVRS).
  23. Ihde J, Barzaghi R, Marti U, Sánchez L, Sideris M, Drewes H, Foerste C, Gruber T, Liebsch G, Pail R (2015) Report of the ad hoc group on an International Height Reference System (IHRS). In: Drewes H, Hornik H (eds) Travaux de l’AIG 39, IAG Reports 2011–2015Google Scholar
  24. Jiang Z et al (2012) The 8th international comparison of absolute gravimeters 2009: the first key comparison (CCM.G-K1) in the field of absolute gravimetry. Metrologia 49:666CrossRefGoogle Scholar
  25. Kotsakis C, Katsambalos K, Ampatzidis D (2012) Estimation of the zero-height geopotential level in a local vertical datum from inversion of co-located GPS, leveling and geoid heights: a case study in the Hellenic islands. J Geod 86(6):423–439. doi: 10.1007/s00190-011-0530-7 CrossRefGoogle Scholar
  26. Kutterer H, Neilan R, Bianco G (2012) Global geodetic observing system (GGOS). In: Drewes H, Hornik H, Ádám J, Rózsa S (eds) The geodesist’s handbook 2012. J Geod 86(10): 915–926. doi: 10.1007/s00190-012-0584-1
  27. Mäkinen J, Ihde J (2009) The permanent tide in heights systems. In: IAG symposia series, vol 133, pp 81–87. doi: 10.1007/978-3-540-85426-5_10
  28. Marti U, Richard PH, Germak A, Vitushkin L, Pálinkáš V, Wilmes H (2015) CCM—IAG strategy for metrology in absolute gravimetry.
  29. McCarthy DD, Petit G (eds) (2004) IERS conventions 2003. IERS technical note no. 32. Verlag des Bundesamtes für Kartographie und Geodäsie. Frankfurt am MainGoogle Scholar
  30. Morelli C, Gantar C, Honkasalo T, McConnell K, Tanner J, Szabo B, Uotila U, Wahlen C (1974) The International Standardization Net 1971 (IGSN71), IUGG-IAG, Publ. Spec. No. 4, ParisGoogle Scholar
  31. Moritz H (1980) geodetic reference system 1980. In: Geodesist’s Handbook 1980. International Association of Geodesy (IAG)Google Scholar
  32. Moritz H (2000) Geodetic reference system 1980. J Geod 74:128–133. doi: 10.1007/s001900050278 CrossRefGoogle Scholar
  33. Munk WH, MacDonald GJ (1960) The rotation of the Earth: a geophysical discussion. Cambridge monographs on mechanics and applied mathematics. Cambridge University PressGoogle Scholar
  34. Pail R, Bingham R, Braitenberg C, Dobslaw H, Eicker A, Güntner A, Horwath M, Ivins E, Longuevergne L, Panet I, Wouters B (2015) IUGG expert panel: science and user needs for observing global mass transport to understand global change and to benefit society. Surv Geophys 36:743. doi: 10.1007/s10712-015-9348-9 CrossRefGoogle Scholar
  35. Pavlis N-K, Holmes SA, Kenyon SC, Factor JK (2012) The development of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 117:B04406. doi: 10.1029/2011JB008916 CrossRefGoogle Scholar
  36. Pavlis N-K, Holmes SA, Kenyon SC, Factor JK (2013) Correction to “The development of the Earth Gravitational Model 2008 (EGM2008)”. J Geophys Res 118:2633. doi: 10.1002/jgrb.50167 CrossRefGoogle Scholar
  37. Petit G, Luzum B (eds) (2010) IERS conventions 2010. IERS Technical Note 36. Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt a.MGoogle Scholar
  38. Plag H-P, Pearlman M (eds) (2009) Global geodetic observing system: meeting the requirements of a global society. Springer, Berlin, HeidelbergGoogle Scholar
  39. Rapp R (1995) A world vertical datum proposal. Allgemeine Vermessungsnachrichten (AVN) 102(8–9):297–304Google Scholar
  40. Rapp RH, Balasubramania N (1992) A conceptual formulation of a world height system, Science and Technology Corp. Subcontract No. 91-06-183020 and U.S. Army Eng. Topographic Lab, Contract No. DACA76-87-D-0009, OSURF Proj. 724952Google Scholar
  41. Rülke A, Liebsch G, Schäfer U, Schirmer U, Ihde J (2014) Height system unification based on GOCE gravity field models: benefits and challenges. In: Observation of the system earth from space—CHAMP, GRACE, GOCE and future missions, Advanced Technologies in Earth Sciences, pp 147–153. doi: 10.1007/978-3-642-32135-1_19
  42. Rummel R, Heck B (2000) Some critical remarks on the definition and realization of the EVRS. In: EUREF Report, Veröffentlichungen der Bayerischen Kommission für die internationale Erdmessung. Heft Nr. 61: 114–115. MünchenGoogle Scholar
  43. Rummel R, Teunissen P (1988) Height datum definition, height datum connection and the role of the geodetic boundary value problem. Bull Géod 62:477–498. doi: 10.1007/BF02520239 CrossRefGoogle Scholar
  44. Rummel R, Gruber TH, Ihde J, Liebsch G, Rülke A, Schäfer U, Sideris M, Rangelova E, Woodworth PH, Hughes CH (2014) STSE-GOCE+, height system unification with GOCE (abstract), Doc. No. GO-HSU-PL-002, issue 1, 24-02-2014Google Scholar
  45. Sánchez L (2007) Definition and realization of the SIRGAS vertical reference system within a globally unified height system. In: IAG symposia series, vol 130, pp 638–645. doi: 10.1007/978-3-540-49350-1_92, 2007
  46. Sánchez L (2012) Towards a vertical datum standardisation under the umbrella of Global Geodetic Observing System. J Geod Sci 2(4):325–342. doi: 10.2478/v10156-012-0002-x Google Scholar
  47. Sánchez L, Dayoub N, Čunderlík R, Minarechová Z, Mikula K, Vatrt V, Vojtíšková M, Šíma Z (2014) W0 estimates in the frame of the GGOS Working Group on Vertical Datum Standardisation. In: Marti U (ed) Gravity, geoid and height systems, IAG symposia series, vol 141, pp 203–210. doi: 10.1007/978-3-319-10837-7_26
  48. Sánchez L, Dayoub N, Cunderlík R, Minarechová Z, Mikula K, Vatrt V, Vojtísková M, Síma Z (2015) Report of joint working group 0.1.1: vertical datum standardization (JWG 0.1.1). In: Drewes H, Hornik H (eds) Travaux de l’AIG 39, IAG reports 2011–2015Google Scholar
  49. Sánchez L, Cunderlík R, Dayoub N, Mikula K, Minarechová Z, Síma Z, Vatrt V, Vojtísková M (2016) A conventional value for the geoid reference potential W0. J Geod. 90(9):815–835. doi: 10.1007/s00190-016-0913-x Google Scholar
  50. Schöne T, Shum CK, Tamisea M, Woodworth PH (2013) GGOS Theme 3: sea level change, variability and forecasting. In: Report of the International Association of Geodesy 2011–2013, pp 31–32.
  51. Sideris M (2013) GGOS Theme 1: unified height system. In: Report of the International Association of Geodesy 2011–2013, pp 25–27Google Scholar
  52. Sideris MG, Rangelova E, Amjadiparvar B (2014) First results on height system unification in North America using GOCE. In: Marti U (ed) Gravity, geoid and height systems. IAG symposia series, vol 141, pp 221–227. doi: 10.1007/978-3-319-10837-7_28
  53. Torge W, Müller J (2012) Geodesy, 4th edn. de Gruyter, BerlinCrossRefGoogle Scholar
  54. Tscherning CC (ed) (1984) The geodesist’s handbook, resolutions of the international association of geodesy adopted at the XVIII General Assembly of the International Union of Geodesy and Geophysics, Hamburg 1983. Bull. Géod., vol 58, p 3Google Scholar
  55. Xu P, Rummel R (1991) A quality investigation of global vertical datum connection. Netherlands Geodetic Commission. Publications on Geodesy. N. 34Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Johannes Ihde
    • 1
    • 2
    Email author
  • Laura Sánchez
    • 3
  • Riccardo Barzaghi
    • 4
  • Hermann Drewes
    • 5
  • Christoph Foerste
    • 1
  • Thomas Gruber
    • 6
  • Gunter Liebsch
    • 2
  • Urs Marti
    • 7
  • Roland Pail
    • 6
  • Michael Sideris
    • 8
  1. 1.Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZPotsdamGermany
  2. 2.Bundesamt für Kartographie und GeodäsieFrankfurt am MainGermany
  3. 3.Deutsches Geodätisches ForschungsinstitutTechnische Universität MünchenMunichGermany
  4. 4.Politecnico di Milano 1863, Dipartimento di Ingegneria Civile e AmbietaleMilan, e in via GolgiItaly
  5. 5.International Association of GeodesyMunichGermany
  6. 6.Lehrstuhl für Astronomische und Physikalische GeodäsieTechnische Universität MünchenMunichGermany
  7. 7.Bundesamt für Landestopografie swisstopoWabernSwitzerland
  8. 8.University of Calgary, 2500 University Drive NWCalgaryCanada

Personalised recommendations