Surveys in Geophysics

, Volume 38, Issue 1, pp 295–307 | Cite as

The Twentieth-Century Sea Level Budget: Recent Progress and Challenges

  • S. JevrejevaEmail author
  • A. Matthews
  • A. Slangen


For coastal areas, given the large and growing concentration of population and economic activity, as well as the importance of coastal ecosystems, sea level rise is one of the most damaging aspects of the warming climate. Huge progress in quantifying the cause of sea level rise and closure of sea level budget for the period since the 1990s has been made mainly due to the development of the global observing system for sea level components and total sea levels. We suggest that a large spread (1.2 ± 0.2–1.9 ± 0.3 mm year−1) in estimates of sea level rise during the twentieth century from several reconstructions demonstrates the need for and importance of the rescue of historical observations from tide gauges, with a focus on the beginning of the twentieth century. Understanding the physical mechanisms contributing to sea level rise and controlling the variability of sea level over the past few 100 years are a challenging task. In this study, we provide an overview of the progress in understanding the cause of sea level rise during the twentieth century and highlight the main challenges facing the interdisciplinary sea level community in understanding the complex nature of sea level changes.


Sea level rise Sea level budget Observing system Data archeology 



This paper is a result of the ISSI Workshop on Integrative Study of Sea Level, held in Bern, Switzerland, February 2–6, 2015. We would like to thank anonymous reviewers for helpful comments that improved our manuscript. This publication has received funding from the European Union’s Seventh Programme for Research, Technological Development and Demonstration under Grant Agreement No: FP7-ENV-2013-Two-Stage-603396-RISES-AM. A. M. and S. J. partially supported by the Natural Environment Research Council National Capability funding. A. S. was supported by the NWO-Netherlands Polar Programme.


  1. Becker M et al (2012) Sea level variations at tropical Pacific islands since 1950. Glob Planet Change 80–81:85–98CrossRefGoogle Scholar
  2. Bindoff NL et al (2007) Observations: oceanic climate change and sea level. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, pp 385–432Google Scholar
  3. Bjork et al (2012) An aerial view of 80 years of climate-related glacier fluctuations in southeast Greenland. Nat Geosci 5:427–432CrossRefGoogle Scholar
  4. Boening C et al (2012) The 2011 La Niña: so strong, the oceans fell. Geophys Res Lett 39:L19602. doi: 10.1029/2012GL053055 Google Scholar
  5. Bradshaw E et al (2015) Sea level data archaeology and the Global Sea Level Observing System (GLOSS). GeoResJ 6:9–16CrossRefGoogle Scholar
  6. Caldwell P (2012) Tide gauge data rescue. In: Duranti L, Shaffe E (eds) Proceedings of the memory of the world in the digital age: digitization and preservation. Vancouver 2012, pp 134–149Google Scholar
  7. Cazenave A, Nerem RS (2004) Present-day sea level change: observations and causes. Rev Geophys 42:RG3001. doi: 10.1029/2003RG000139 CrossRefGoogle Scholar
  8. Cazenave A, Llovel W (2010) Contemporary sea level rise. Annu Rev Mar Sci 2:145–173CrossRefGoogle Scholar
  9. Cazenave A et al (2009) Sea level budget over 2003–2008: a reevaluation from GRACE space gravimetry, satellite altimetry and Argo. Glob Planet Change 65:83–88CrossRefGoogle Scholar
  10. Cazenave A et al (2012) Estimating ENSO influence on the global mean sea level, 1993–2010. Mar Geodesy 35:82–97. doi: 10.1080/01490419.2012.718209 CrossRefGoogle Scholar
  11. Cazenave A et al (2014) The rate of sea-level rise. Nat Clim Change 4:358–361CrossRefGoogle Scholar
  12. Church JA, White NJ (2006) A 20th century acceleration in global sea-level rise. Geophys Res Lett 33:L01602. doi: 10.1029/2005GL024826 CrossRefGoogle Scholar
  13. Church JA, White NJ (2011) Sea-level rise from the late 19th to the early 21st century. Surv Geophys 32:585–602CrossRefGoogle Scholar
  14. Church JA et al (2001) Changes in sea level. In: Houghton JT, Ding Y, Griggs DJ, Noquer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, Cambridge, pp 639–693Google Scholar
  15. Church JA et al (2011) Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys Res Lett 38:L18601. doi: 10.1029/2011GL048794 CrossRefGoogle Scholar
  16. Church JA et al (2013) Sea level change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013, the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  17. Dieng HB et al (2015) The sea level budget Since 2003: inference on the deep ocean heat content. Surv Geophys 36:209–229CrossRefGoogle Scholar
  18. Domingues CM et al (2008) Improved estimates of upper-ocean warming and multi-decadal sea level rise. Nature 453:1090–1093CrossRefGoogle Scholar
  19. Douglas BC (1997) Global sea rise: a redetermination. Surv Geophys 18:270–292CrossRefGoogle Scholar
  20. Grinsted A et al (2007) Observational evidence for volcanic impact on sea level and the global water cycle. PNAS 104:19730–19734. doi: 10.1073/pnas.0705825104
  21. Gornitz V et al (1982) Global sea level trend in the past century. Science 215:1611–1614. doi: 10.1126/science.215.4540.1611 CrossRefGoogle Scholar
  22. Gregory JM et al (2013) Twentieth-century global-mean sea level rise: is the whole greater than the sum of the parts? J Clim. doi: 10.1175/JCLI-D-12-00319.1 Google Scholar
  23. Hallegatte S et al (2013) Future flood losses in major coastal cities. Nat Clim Change 3:802–806. doi: 10.1038/nclimate1979 CrossRefGoogle Scholar
  24. Hamlington B, Thompson P (2015) Considerations for estimating the 20th century trend in global mean sea level. Geophys Res Lett 42:4102–4109. doi: 10.1002/2015GL064177 CrossRefGoogle Scholar
  25. Hay C et al (2015) Probabilistic reanalysis of twentieth-century sea-level rise. Nature 517:481–484. doi: 10.1038/nature14093 CrossRefGoogle Scholar
  26. Hegerl GC et al (2007) Understanding and attributing climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 663–745Google Scholar
  27. Holgate et al (2013) New data systems and products at the permanent service for mean sea level. J Coast Res 29:493–504CrossRefGoogle Scholar
  28. Houghton et al (1990) Climate change 1990: the science of climate change. Cambridge University Press, CambridgeGoogle Scholar
  29. Intergovernmental Panel on Climate Change (IPCC) (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  30. Jacob T et al (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature. doi: 10.1038/nature10847 Google Scholar
  31. Jevrejeva S et al (2006) Nonlinear trends and multi-year cycle in sea level records. J Geophys Res 111 (2005JC003229). doi: 10.1029/2005JC003229
  32. Jevrejeva S et al (2008) Relative importance of mass and volume changes to global sea level rise. J Geophys Res 113:D08105. doi: 10.1029/2007JD009208 CrossRefGoogle Scholar
  33. Jevrejeva S et al (2010) How will sea level respond to changes in natural and anthropogenic forcings by 2100? Geophys Res Lett 37:L07703 (2010GL042947) CrossRefGoogle Scholar
  34. Jevrejeva S et al (2012) Potential for bias in 21st century semiempirical sea level projections. J Geophys Res 117:D20116. doi: 10.1029/2012JD017704 CrossRefGoogle Scholar
  35. Jevrejeva S et al (2014) Upper limit for sea level projections by 2100. Environ Res Lett 9:104008CrossRefGoogle Scholar
  36. King MA et al (2012) Regional biases in absolute sea-level estimates from tide gauge data due to residual unmodeled vertical land movement. Geophys Res Lett 39:L14604CrossRefGoogle Scholar
  37. Kjeldsen KK et al (2015) Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900. Nature 528:396–400CrossRefGoogle Scholar
  38. Leclercq PW, Oerlemans J, Cogley JG (2011) Estimating the glacier contribution to sea-level rise over the period 1800–2005. Surv Geophys 32:519–535. doi: 10.1007/s10712-011-9121-7 CrossRefGoogle Scholar
  39. Leuliette EW, Scharroo R (2010) Integrating Jason-2 into a multiple-altimeter climate data record. Mar Geodesy 33:504CrossRefGoogle Scholar
  40. Leuliette EW, Willis JK (2011) Balancing the sea level budget. Oceanography 24:122–129CrossRefGoogle Scholar
  41. Marcos M et al (2011) The long sea level record at Cadiz (southern Spain) from 1880 to 2009. J Geophys Res 116(C12):1978–2012CrossRefGoogle Scholar
  42. Marzeion B et al (2012) Past and future sea-level changes from the surface mass balance of glaciers. Cryosphere 6:1295–1322CrossRefGoogle Scholar
  43. Marzeion B, Leclercq PW, Cogley JG, Jarosch AH (2015) Brief communication: global reconstructions of glacier mass change during the 20th century are consistent. Cryosphere 9:2399–2404. doi: 10.5194/tc-9-2399-2015 CrossRefGoogle Scholar
  44. Meehl GA et al (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: contribution of Working Group I to the Fourth Assessment Report of the IPCC. Cambridge University Press, CambridgeGoogle Scholar
  45. Merrifield MA et al (2009) An anomalous recent acceleration of global sea level rise. J Clim 22:5772–5781. doi: 10.1175/2009JCLI2985.1 CrossRefGoogle Scholar
  46. Mitrovica JX et al (2001) Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409:1026–1029CrossRefGoogle Scholar
  47. Mitrovica JX et al (2015) Reconciling past changes in Earth rotation with 20th century global sea-level rise: resolving Munk’s enigma. Sci Adv 1(11), Article e1500679Google Scholar
  48. Moore JC et al (2011) The historical sea level budget. Ann Glac 52:59CrossRefGoogle Scholar
  49. Moore JC et al (2013) Semi-empirical and process-based global sea level projections. Rev Geophys. doi: 10.1002/rog.20015 Google Scholar
  50. Munk W (2002) Twentieth century sea level: an enigma. Proc Natl Acad Sci USA 99:6550–6555CrossRefGoogle Scholar
  51. Neckel et al (2014) Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements. Environ Res Lett 9:014009. doi: 10.1088/1748-9326/9/1/014009 CrossRefGoogle Scholar
  52. Peltier WR (2001) Global glacial isostatic adjustment and modern instrumental records of relative sea level history. In: Douglas BC, Kearney MS, Leatherman SP (eds) Sea level rise. Elsevier, New York, pp 65–93Google Scholar
  53. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age earth: the ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111–149CrossRefGoogle Scholar
  54. Peltier WR et al (2015) Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model. J Geophys Res Solid Earth. doi: 10.1002/2014JB011176 Google Scholar
  55. Pouvreau N (2008) Trois cents ans de mesures marégraphiques en France: outils, méthodes et tendances des composantes du niveau de la mer au port de Brest. Université de La Rochelle. Ph.D. thesisGoogle Scholar
  56. Ray RD, Douglas BC (2011) Experiments in reconstructing twentieth-century sea levels. Prog Oceanogr 91:496–515. doi: 10.1016/j.pocean.2011.07.021 CrossRefGoogle Scholar
  57. Schutz BE et al (2005) Overview of the ICESat Mission. Geophys Res Lett 32:L21S01. doi: 10.1029/2005GL024009 CrossRefGoogle Scholar
  58. Shepherd A et al (2012) A reconciled estimate of ice-sheet mass balance. Science 338:1183–1189CrossRefGoogle Scholar
  59. Slangen A et al (2016) Anthropogenic forcing dominates global mean sea-level rise since 1970. Nat Clim Change 6:701–705. doi: 10.1038/NCLIMATE2991 CrossRefGoogle Scholar
  60. Talke SA, Jay DA (2013) Nineteenth century North American and Pacific tidal data: lost or just forgotten? J Coast Res 29(6a):118–127CrossRefGoogle Scholar
  61. Testut L, Miguez BM, Wöppelmann G, Tiphaneau P, Pouvreau N, Karpytchev M (2010) Sea level at Saint Paul Island, southern Indian Ocean, from 1874 to the present. J Geophys Res (1978–2012) 115(C12028). doi: 10.1029/2010JC006404
  62. Thompson et al (2016) Are long tide gauge records in the wrong place to measure global mean sea level rise? Geophys Res Lett. doi: 10.1002/2016GL070552 Google Scholar
  63. von Schuckmann K, Le Traon PY (2011) How well can we derive Global Ocean Indicators from Argo data? Ocean Sci 7:783–791CrossRefGoogle Scholar
  64. Warrick RA, Oerlemans J (1990) Sea level rise. In: Climate change, The IPCC Scientific Assessment, pp 260–281Google Scholar
  65. Warrick RA et al (1996) Changes in sea level. In: Houghton JT, Meira LG, Callander A, Harris N, Kattenberg A, Maskell K (eds) Climate change 1995: the science of climate change. Contribution of WGI to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 359–405Google Scholar
  66. Wenzel M, Schroter J (2010) Reconstruction of regional mean sea level anomalies from tide gauges using neural networks. J Geophys Res. doi: 10.1029/2009JC005630 Google Scholar
  67. Wöppelmann G, Marcos M (2016) Vertical land motion as a key to understanding sea level change and variability. Rev Geophys 54:64–92. doi: 10.1002/2015RG000502 CrossRefGoogle Scholar
  68. Wöppelmann G et al (2008) Tide gauge datum continuity at Brest since 1711: France’s longest sea-level record. Geophys Res Lett 35:L22605. doi: 10.1029/2008GLO35783 CrossRefGoogle Scholar
  69. Wöppelmann G et al (2009) Rates of sea-level change over the past century in a geocentric reference frame. Geophys Res Lett 36:L12607. doi: 10.1029/2009GL038720 CrossRefGoogle Scholar
  70. Wöppelmann G et al (2014) Rescue of the historical sea level record of Marseille (France) from 1885 to 1988, and its extension back to 1849–1851. J Geodesy 88:869–885CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.National Oceanography CentreLiverpoolUK
  2. 2.Institute for Marine and Atmospheric Research Utrecht (IMAU)Utrecht UniversityUtrechtThe Netherlands

Personalised recommendations