Surveys in Geophysics

, Volume 38, Issue 1, pp 251–275

Arctic Sea Level During the Satellite Altimetry Era

Article
  • 248 Downloads

Abstract

Results of the sea-level budget in the high latitudes (up to 80°N) and the Arctic Ocean during the satellite altimetry era. We investigate the closure of the sea-level budget since 2002 using two altimetry sea-level datasets based on the Envisat waveform retracking: temperature and salinity data from the ORAP5 reanalysis, and Gravity Recovery And Climate Experiment (GRACE) space gravimetry data to estimate the steric and mass components. Regional sea-level trends seen in the altimetry map, in particular over the Beaufort Gyre and along the eastern coast of Greenland, are of halosteric origin. However, in terms of regional average over the region ranging from 66°N to 80°N, the steric component contributes little to the observed sea-level trend, suggesting a dominant mass contribution in the Arctic region. This is confirmed by GRACE-based ocean mass time series that agree well with the altimetry-based sea-level time series. Direct estimate of the mass component is not possible prior to GRACE. Thus, we estimated the mass contribution from the difference between the altimetry-based sea level and the steric component. We also investigate the coastal sea level with tide gauge records. Twenty coupled climate models from the CMIP5 project are also used. The models lead us to the same conclusions concerning the halosteric origin of the trend patterns.

Keywords

Arctic Ocean Sea-level change Steric sea level Satellite altimetry Ocean mass CMIP5 models 

References

  1. Ablain M, Cazenave A, Larnicol G, Balmaseda M, Cipollini P, Faugère Y, Fernandes MJ, Henry O, Johannessen JA, Knudsen P, Andersen O, Legeais J, Meyssignac B, Picot N, Roca M, Rudenko S, Scharffenberg MG, Stammer D, Timms G, Benveniste J (2015) Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project. Ocean Sci 11:67–82. doi:10.5194/os-11-67-2015 CrossRefGoogle Scholar
  2. Andersen OB, Piccioni G (2016) Recent Arctic sea level variations from satellites. Front Mar Sci. doi:10.3389/fmars.2016.00076 Google Scholar
  3. Andersen O, Knudsen P, Stenseng L (2015) The DTU13 MSS (mean sea surface) and MDT (mean dynamic topography) from 20 years of satellite altimetry. IAG Symp. doi:10.1007/1345_2015_182 Google Scholar
  4. Armitage TWK, Bacon S, Ridout AL, Thomas SF, Aksenov Y, Wingham DJ (2016) Arctic sea surface height variability and change from satellite radar altimetry and GRACE, 2003–2014. J Geophys Res Oceans 121:4303–4322. doi:10.1002/2015JC011579 CrossRefGoogle Scholar
  5. Boyer TP, Antonov JI, Garcia HE, Johnson DR, Locarnini RA, Mishonov AV, Pitcher MT, Baranova OK, Smolyar IV (2006) World Ocean Database 2005. In: Levitus S (ed) NODC Atlas NESDIS 60. U.S. Government Printing Office, WashingtonGoogle Scholar
  6. Blazquez A, Meyssignac B, Lemoine JM, Cazenave A, Berthier E (in preparation) Uncertainty in GRACE estimates of the mass redistributions at the Earth surface and impact on the sea level budgetGoogle Scholar
  7. Chambers DP (2012) GRACE monthly ocean mass grids Netcdf release 5.0. Ver. 5.0. PO.DAAC, CA, USA. doi:10.5067/TEOCN-0N005. Accessed 15 Dec 2015
  8. Chambers DP, Bonin JA (2012) Evaluation of release 05 time-variable gravity coefficients over the ocean. Ocean Sci 8:859–868. doi:10.5194/os-8-859-2012 CrossRefGoogle Scholar
  9. Chambers DP, Willis JK (2010) A global evaluation of ocean bottom pressure from GRACE, OMCT, and steric-corrected altimetry. J Ocean Atmos Technol 27:1395–1402. doi:10.1175/2010jtecho738.1 CrossRefGoogle Scholar
  10. Chen JL, Wilson CR, Li J, Zhang Z (2015) Reducing leakage error in GRACE-observed long term ice mass change: a case study in West Antarctica. J Geod 89:925–940. doi:10.1007/s00190-015-0824-2 CrossRefGoogle Scholar
  11. Cheng M, Ries JC, Tapley BD (2011) Variations of the Earth’s figure axis from satellite laser ranging and GRACE. J Geophys Res. doi:10.1029/2010JB000850 Google Scholar
  12. Cheng Y, Andersen OB, Knudsen P (2012) First evaluation of MyOcean altimetric data in the Arctic Ocean. Ocean Sci Discuss 9:291–314. doi:10.5194/osd-9-291-2012 CrossRefGoogle Scholar
  13. Cheng Y, Andersen OB, Knudsen P (2015) An improved 20-year Arctic Ocean altimetric sea level data record. Mar Geod 38(2):146–162. doi:10.1080/01490419.2014.954087 CrossRefGoogle Scholar
  14. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars M, Van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Holm EV, Isaksen L, Kallberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828 CrossRefGoogle Scholar
  15. Gardner AS, Moholdt G, Graham Cogley J, Wouters B, Arendt AA, Wahr J, Berthier E, Hock R, Pfeffer WT, Kaser G, Ligtenberg SRM, Bolch T, Sharp MJ, Hagen JO, van den Broeke MR, Paul F (2013) A reconciled estimate of glacier contributions to sea level rise, 2003–2009. Science 340:852–857. doi:10.1126/science.1234532 CrossRefGoogle Scholar
  16. Geruo A, Wahr J, Zhong S (2013) Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophys J Int 192:557–572. doi:10.1093/gji/ggs030 CrossRefGoogle Scholar
  17. Henry O, Prandi P, Llovel W, Cazenave A, Jevrejeva S, Stammer D, Meyssignac B, Koldunov N (2012) Tide gauge-based sea level variations since 1950 along the Norwegian and Russian coasts of the Arctic Ocean: contribution of the steric and mass components. J Geophys Res. doi:10.1029/2011JC007706 Google Scholar
  18. Holgate SJ, Matthews A, Woodworth PL, Rickards LJ, Tamisiea ME, Bradshaw E, Foden PR, Gordon KM, Jevrejeva S, Pugh J (2013) New data systems and products at the permanent service for mean sea level. J Coast Res 29(3):493–504. doi:10.2112/JCOASTRES-D-12-00175.1 CrossRefGoogle Scholar
  19. Koldunov NV, Serra N, Köhl A, Stammer D, Henry O, Cazenave A, Prandi P, Knudsen P, Andersen OB, Gao Y, Johannessen J (2014) Multimodel simulations of Arctic Ocean sea surface height variability in the period 1970–2009. J Geophys Res Oceans 119:8936–8954. doi:10.1002/2014JC010170 CrossRefGoogle Scholar
  20. Kouraev AV, Papa F, Mognard NM, Buharizin PI, Cazenave A, Crétaux JF, Dozortseva J, Remy F (2004) Sea ice cover in the Caspian and Areal Seas from historical and satellite data. J Mar Syst 47:89–100. doi:10.1016/j.jmarsys.2003.12.011 CrossRefGoogle Scholar
  21. Kusche J, Schmidt R, Petrovic S, Rietbroek R (2009) Decorrelated GRACE time-variable gravity solutions by GFZ, and their validation using a hydrological model. J Geod 83(10):903–913. doi:10.1007/s00190-009-0308-3 CrossRefGoogle Scholar
  22. Morison J, Kwok R, Peralta-Ferriz C, Alkire M, Rigor I, Andersen R, Steele M (2012) Changing Arctic Ocean freshwater pathways. Nature 481:66–70. doi:10.1038/nature10705 CrossRefGoogle Scholar
  23. Ollivier A, Guibbaud M (2012) Envisat RA-2/MWR ocean data validation and cross-calibration activities. Yearly report. Technical note CLS.DOS/NT/12.021, contract SALP-RP-MA-EA-22062-CLSGoogle Scholar
  24. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age earth: the ICE-5G (VM2) model and GRACE. Ann Rev Earth Planet Sci 32:111–149. doi:10.1146/annurev.earth.32.082503.144359 CrossRefGoogle Scholar
  25. Peltier WR, Argus DF, Drummond R (2015) Space geodesy constrains ice-age terminal deglaciation: the global ICE-6G_C (VM5a) model. J Geophys Res Solid Earth 120:450–487. doi:10.1002/2014JB011176 CrossRefGoogle Scholar
  26. Permanent Service for Mean Sea Level (PSMSL) (2016) Tide gauge data. http://www.psmsl.org/data/obtaining/. Retrieved Nov 2016
  27. Poisson JC et al (in preparation) Extending sea level estimation into the Arctic Ocean Using ENVISAT AltimetryGoogle Scholar
  28. Prandi P, Ablain M, Cazenave A, Picot N (2012) A new estimation of mean sea level in the Arctic Ocean from satellite altimetry. Mar Geod 35(sup1):61–81. doi:10.1080/01490419.2012.718222 CrossRefGoogle Scholar
  29. Proshutinsky A, Pavlov V, Bourke RH (2001) Sea level rise in the Arctic Ocean. Geophys Res Lett 28(11):2237–2240. doi:10.1029/2000GL012760 CrossRefGoogle Scholar
  30. Proshutinsky A, AshiI M, Dvorkin EN, Häkkinen S, Krishfield RA, Peltier WR (2004) Secular sea level change in the Russian sector of the Arctic Ocean. J Geophys Res. doi:10.1029/2003JC002007 Google Scholar
  31. Proshutinsky A, Ashik I, Häkkinen S, Hunke E, Krishfield R, Maltrud M, Maslowski W, Zhang J (2007) Sea level variability in the Arctic Ocean from AOMIP models. J Geophys Res. doi:10.1029/2006JC003916 Google Scholar
  32. Proshutinsky A, Timmermans ML, Ashik I, Beszcynska-Moeller A, Carmack E, Eert J, Frolov I, Itoh M, Kikuchi T, Krishfield R, McLaughlin F, Rabe B, Schauer U, Shimada K, Sokolov V, Steele M, Toole J, Williams W, Woodgate R, Zimmermann S (2011) The Arctic Ocean. Bull Am Meteorol Soc 92(supplement 6):S145–S148Google Scholar
  33. Rhein M, Rintoul SR, Aoki S, Campos E, Chambers D, Feely RA, Gulev S, Johnson GC, Josey SA, Kostianoy A, Mauritzen C, Roemmich D, Talley LD, Wang F (2013) Observations: Ocean. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  34. Rigor IG, Wallace JM, Colony RG (2002) Response of sea ice to the Arctic Oscillation. J Clim 15:2648–2663. doi:10.1175/1520-0442(2002)015<2648:rositt>2.0.co;2 CrossRefGoogle Scholar
  35. Rudels B (2012) Arctic Ocean circulation and variability—advection and external forcing encounter constraints and local processes. Ocean Sci 8:261–286. doi:10.5194/os-8-261-2012 CrossRefGoogle Scholar
  36. Shepherd A, Ivins ER, Geruo A, Barletta VR, Bentley MJ, Bettadpur S, Briggs KH, Bromwich DH, Forsberg R, Galin N, Horwarth M, Jacobs S, Joughin I, King MA, Lenaerts JTM, Li J, Ligtenberg SRM, Luckman A, Luthcke SB, McMillan M, Meister R, Milne G, Mouginot J, Muir A, Nicolas JP, Paden J, Payne AJ, Pritchard H, Rignot E, Rott H, Sørensen LS, Scambos TA, Scheuchl B, Schrama EJO, Smith B, Sundal AV, van Angelen JH, van de Berg WJ, van den Broeke MR, Vaughan DG, Velicogna I, Wahr J, Whitehouse PL, Wingham DJ, Yi D, Young D, Zwally HJ (2012) A reconciled estimate of ice-sheet mass balance. Science 338(6111):1183–1189. doi:10.1126/science.1228102
  37. Smith LC, Sheng Y, MacDonald GM, Hinzman LD (2005) Disappearing Arctic lakes. Science 308:1429. doi:10.1126/science.1108142 CrossRefGoogle Scholar
  38. Swenson SC, Chambers DP, Wahr J (2008) Estimating geocenter variations from a combination of GRACE and ocean model output. J Geophys Res Solid Earth. doi:10.1029/2007JB005338 Google Scholar
  39. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  40. Valladeau G, Thibaut P, Picard B, Poisson JC, Tran N, Picot N, Guillot A (2015) Using SARAL/AltiKa to improve Ka-band altimeter measurements for coastal zones, hydrology and ice: the PEACHI prototype. Mar Geod 38(S1):124–142. doi:10.1080/01490419.2015.1020176 CrossRefGoogle Scholar
  41. Vaughan DG, Comiso JC, Allison I, Carrasco J, Kaser G, Kwok R, Mote P, Murray T, Paul F, Ren J, Rignot E, Solomina O, Steffen K, Zhang T (2013) Observations: cryosphere. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  42. Velicogna I, Sutterley TC, van den Broeke MR (2014) Regional acceleration in icemass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophys Res Lett. doi:10.1002/2014GL061052 Google Scholar
  43. Volkov DL (2014) Do the North Atlantic winds drive the nonseasonal variability of the Arctic Ocean sea level? Geophys Res Lett. doi:10.1002/2013GL059065 Google Scholar
  44. Volkov DL, Landerer FW (2013) Nonseasonal fluctuations of the Arctic Ocean mass observed by the GRACE satellites. J Geophys Res Oceans 118:6451–6460. doi:10.1002/2013JC009341 CrossRefGoogle Scholar
  45. Volkov DL, Landerer FW, Kirillov SA (2013) The genesis of sea level variability in the Barents Sea. Cont Shelf Res 66:92–104. doi:10.1016/j.csr.2013.07.007 CrossRefGoogle Scholar
  46. Watkins MW, Wiese DN, Yuan D-N, Boening C, Landerer FW (2015) Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J Geophys Res Solid Earth. doi:10.1002/2014JB011547 Google Scholar
  47. Wiese DN (2015) GRACE monthly global water mass grids netcdf release 5.0. Ver. 5.0. PO.DAAC, CA, USA. doi:10.5067/TEMSC-OCL05. Accessed 15 Dec 2015
  48. Yin J, Griffies SM, Stouffer RJ (2010) Spatial variability of sea level rise in twenty-first century projections. J Clim. doi:10.1175/2010JCLI3533,1 Google Scholar
  49. Zuo H, Balmaseda MA, Mogensen K (2015) The new eddy-permitting ORAP5 ocean reanalysis: description, evaluation and uncertainties in climate signals. Clim Dyn. doi:10.1007/s00382-015-2675-1 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.LEGOS, CNES, CNRS, IRD, UPSToulouseFrance
  2. 2.NERSCBergenNorway
  3. 3.DTUKongens LyngbyDenmark
  4. 4.CLSRamonville Saint-AgneFrance

Personalised recommendations