Surveys in Geophysics

, Volume 38, Issue 1, pp 187–215 | Cite as

Causes of the Regional Variability in Observed Sea Level, Sea Surface Temperature and Ocean Colour Over the Period 1993–2011

  • B. Meyssignac
  • C. G. Piecuch
  • C. J. Merchant
  • M.-F. Racault
  • H. Palanisamy
  • C. MacIntosh
  • S. Sathyendranath
  • R. Brewin
Article

Abstract

We analyse the regional variability in observed sea surface height (SSH), sea surface temperature (SST) and ocean colour (OC) from the ESA Climate Change Initiative datasets over the period 1993–2011. The analysis focuses on the signature of the ocean large-scale climate fluctuations driven by the atmospheric forcing and do not address the mesoscale variability. We use the ECCO version 4 ocean reanalysis to unravel the role of ocean transport and surface buoyancy fluxes in the observed SSH, SST and OC variability. We show that the SSH regional variability is dominated by the steric effect (except at high latitude) and is mainly shaped by ocean heat transport divergences with some contributions from the surface heat fluxes forcing that can be significant regionally (confirming earlier results). This is in contrast with the SST regional variability, which is the result of the compensation of surface heat fluxes by ocean heat transport in the mixed layer and arises from small departures around this background balance. Bringing together the results of SSH and SST analyses, we show that SSH and SST bear some common variability. This is because both SSH and SST variability show significant contributions from the surface heat fluxes forcing. It is evidenced by the high correlation between SST and buoyancy-forced SSH almost everywhere in the ocean except at high latitude. OC, which is determined by phytoplankton biomass, is governed by the availability of light and nutrients that essentially depend on climate fluctuations. For this reason, OC shows significant correlation with SST and SSH. We show that the correlation with SST displays the same pattern as the correlation with SSH with a negative correlation in the tropics and subtropics and a positive correlation at high latitude. We discuss the reasons for this pattern.

Keywords

Sea level Sea surface temperature Ocean colour Ocean heat content Climate ESA Climate Change Initiative Wind forcing Buoyancy forcing ECCO reanalysis 

Supplementary material

10712_2016_9383_MOESM1_ESM.docx (4.4 mb)
Supplementary material 1 (DOCX 4473 kb)

References

  1. Ablain M, Cazenave A, Larnicol G, Balmaseda M, Cipollini P, Faugère Y, Fernandes MJ, Henry O, Johannessen JA, Knudsen P, Andersen O, Legeais J, Meyssignac B, Picot N, Roca M, Rudenko S, Scharffenberg MG, Stammer D, Timms G, Benveniste J (2015) Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project. Ocean Sci 11:67–82. doi:10.5194/os-11-67-2015 CrossRefGoogle Scholar
  2. Abraham JP, Baringer M, Bindoff NL, Boyer T, Cheng LJ, Church JA, Conroy JL, Domingues CM, Fasullo JT, Gilson J, Goni G, Good SA, Gorman JM, Gouretski V, Ishii M, Johnson GC, Kizu S, Lyman JM, Macdonald AM, Minkowycz WJ, Moffitt SE, Palmer MD, Piola AR, Reseghetti F, Schuckmann K, Trenberth KE, Velicogna I, Willis JK (2013) A review of global ocean temperature observations: implications for ocean heat content estimates and climate change. Rev Geophys 51:450–483. doi:10.1002/rog.20022 CrossRefGoogle Scholar
  3. Boyd PW, Jickells T, Law CS, Blain S, Boyle EA, Buesseler KO, Coale KH, Cullen JJ, de Baar HJW, Follows M, Harvey M, Lancelot C, Levasseur M, Owens NPJ, Pollard R, Rivkin RB, Sarmiento J, Schoemann V, Smetacek V, Takeda S, Tsuda A, Turner S, Watson AJ (2007) Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315:612–617. doi:10.1126/science.1131669 CrossRefGoogle Scholar
  4. Brewin RJW, Hirata T, Hardman-Mountford NJ, Lavender SJ, Sathyendranath S, Barlow R (2012) The Influence of the Indian Ocean Dipole on interannual variations in phytoplankton size structure as revealed by earth observation. Deep Sea Res II 77–80:117–127. doi:10.1016/j.dsr2.2012.04.009 CrossRefGoogle Scholar
  5. Brewin RJW, Mélin F, Sathyendranath S, Steinmetz F, Chuprin A, Grant M (2014) On the temporal consistency of chlorophyll products derived from three ocean-colour sensors. ISPRS J Photogramm Remote Sens 97:171–184. doi:10.1016/j.isprsjprs.2014.08.013 CrossRefGoogle Scholar
  6. Buckley MW, Ponte RM, Forget G, Heimbach P (2014) Low-frequency SST and upper-ocean heat content variability in the North Atlantic. J Clim 27:4996–5018. doi:10.1175/JCLI-D-13-00316.1 CrossRefGoogle Scholar
  7. Cabanes C, Huck T, Colin de Verdière A (2006) Contributions of wind forcing and surface heating to interannual sea level variations in the Atlantic Ocean. J Phys Oceanogr 36(9):1739–1750CrossRefGoogle Scholar
  8. Cayan DR (1992) Latent and sensible heat flux anomalies over the northern oceans: driving the sea surface temperature. J Phys Oceanogr 22:859–881CrossRefGoogle Scholar
  9. Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann L, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne AJ, Pfeffer WT, Stammer D, Unnikrishnan AS (2013) Sea level change. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  10. Corredor JE, Morell JM, Lopez JM, Capella JE, Armstrong RA (2004) Cyclonic eddy entrains Orinoco River Plume in eastern Caribbean. EOS Trans Am Geophys Union 85(20):197–202CrossRefGoogle Scholar
  11. Dee D, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. doi:10.1002/qj.828 CrossRefGoogle Scholar
  12. Deser C, Alexander MA, Timlin MS (2003) Understanding the persistence of sea surface temperature anomalies in midlatitudes. J. Clim 16:57–72. doi:10.1175/1520-0442(2003)016<0057:UTPOSS>2.0.CO;2 CrossRefGoogle Scholar
  13. Deser C, Alexander MA, Xie SP, Phillips AS (2010) Sea surface temperature variability: patterns and mechanisms. Ann Rev Mar Sci 2:115–143. doi:10.1146/annurev-marine-120408-151453 CrossRefGoogle Scholar
  14. Durack PJ, Wijffels SE, Gleckler PJ (2014) Long-term sea-level change revisited: the role of salinity. Environ Res Lett 9:114017. doi:10.1088/1748-9326/9/11/114017 CrossRefGoogle Scholar
  15. Edwards AM, Platt T, Wright DG (2001) Biologically induced circulation at fronts. J Geophys Res 106:7081–7095. doi:10.1029/2000JC000332 CrossRefGoogle Scholar
  16. Forget G, Ponte RM (2015) The partition of regional sea level variability. Prog Oceanogr 137:173–195. doi:10.1016/j.pocean.2015.06.002 CrossRefGoogle Scholar
  17. Forget G, Campin JM, Heimbach P, Hill CN, Ponte RM, Wunsch C (2015) ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci Model Dev 8:3071–3104. doi:10.5194/gmd-8-3071-2015 CrossRefGoogle Scholar
  18. Frankcombe LM, Spence P, Hogg AM, England MH, Griffies SM (2013) Sea level changes forced by Southern Ocean winds. Geophys Res Lett 40:5710–5715. doi:10.1002/2013GL058104 CrossRefGoogle Scholar
  19. Frankignoul C, Hasselmann K (1977) Stochastic climate models. Part 2. Application to sea-surface temperature variability and thermocline variability. Tellus 29:284–305. doi:10.1111/j.2153-3490.1977.tb00740.x CrossRefGoogle Scholar
  20. Fu G, Baith KS, McClain CR (1998) The SeaWiFS data analysis system. In: Proceedings of the 4th Pacific Ocean remote sensing conference, Qingdao, July 1998, pp 73–79Google Scholar
  21. Fukumori I, Wang O (2013) Origins of heat and freshwater anomalies underlying regional decadal sea level trends. Geophys Res Lett 40:563–567. doi:10.1002/grl.50164 CrossRefGoogle Scholar
  22. Fukumori I, Wang O, Llovel W, Fenty I, Forget G (2015) A near-uniform fluctuation of ocean bottom pressure and sea level across the deep ocean basins of the Arctic Ocean and the Nordic Seas. Prog Oceanogr 134:152–172. doi:10.1016/j.pocean.2015.01.013 CrossRefGoogle Scholar
  23. Gill A, Niller P (1973) The theory of the seasonal variability in the ocean. Deep Sea Res 20(2):141–177. doi:10.1016/0011-7471(73)90049-1 Google Scholar
  24. Gregory JM, Church JA, Boer GJ, Dixon KW, Flato GM, Jackett DR, Lowe JA, O’Farrell SP, Roeckner E, Russell GL, Stouffer RJ, Winton M (2001) Comparison of results from several AOGCMs for global and regional sea-level change 1900–2100. Clim Dyn 18:225–240. doi:10.1007/s003820100180 CrossRefGoogle Scholar
  25. Grodsky SA, Carton JA, Liu H (2008) Comparison of bulk sea surface and mixed layer temperatures. J Geophys Res 113:C10026. doi:10.1029/2008JC004871 CrossRefGoogle Scholar
  26. Hu C, Montgomery ET, Schmitt RW, Muller-Karger FE (2004) The dispersal of the Amazon and Orinoco River water in the tropical Atlantic and Caribbean Sea: observation from space and S-PALACE floats. Deep Sea Res II 51:1151–1171. doi:10.1016/j.dsr2.2004.04.001 CrossRefGoogle Scholar
  27. Ishii M, Kimoto M (2009) Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J Oceanogr 65:287–299. doi:10.1007/s10872-009-0027-7 CrossRefGoogle Scholar
  28. Johns WE, Lee TN, Schott F, Zantopp RJ, Evans RH (1990) The North Brazil Current retroflection: seasonal structure and eddy variability. J Geophys Res 95:22103–22120. doi:10.1029/JC095iC12p22103 CrossRefGoogle Scholar
  29. Kahru M, Gille ST, Murtugudde R, Strutton PG, Manzano-Sarabia M, Wang H, Mitchell BG (2010) Global correlations between winds and ocean chlorophyll. J Geophys Res. doi:10.1029/2010JC006500 Google Scholar
  30. Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems, 2nd edn. Cambridge University Press, New YorkCrossRefGoogle Scholar
  31. Köhl A (2014) Detecting processes contributing to interannual halosteric and thermosteric sea level variability. J Clim 27:2417–2426. doi:10.1175/JCLI-D-13-00412.1 CrossRefGoogle Scholar
  32. Laws EA, Falkowski PG, Smith WOS Jr, Ducklow H, McCarthy JJ (2000) Temperature effects on export production in the open ocean. Global Biogeochem Cycles 14:1231–1246CrossRefGoogle Scholar
  33. Le Quéré C, Bopp L, Tegen I (2002) Antarctic circumpolar wave impact on marine biology: a natural laboratory for climate change study. Geophys Res Lett. doi:10.1029/2001GL014585 Google Scholar
  34. Lewis MR, Cullen JJ, Platt T (1983) Phytoplankton and thermal structure in the upper ocean: consequences of nonuniformity in chlorophyll profile. J Geophys Res 88:2565–2570. doi:10.1029/JC088iC04p02565 CrossRefGoogle Scholar
  35. Llovel W, Lee T (2015) Importance and origin of halosteric contribution to sea level change in the southeast Indian Ocean during 2005–2013. Geophys Res Lett 42:1148–1157. doi:10.1002/2014GL062611 CrossRefGoogle Scholar
  36. Makowski JK, Chambers DP, Bonin JA (2015) Using ocean bottom pressure from the gravity recovery and climate experiment (GRACE) to estimate transport variability in the southern Indian Ocean. J Geophys Res Oceans 120:4245–4259. doi:10.1002/2014JC010575 CrossRefGoogle Scholar
  37. Manizza M, Le Quere C, Watson AJ, Buitenhuis ET (2005) Bio-optical feedbacks among phytoplankton, upper ocean physics and sea-ice in a global model. Geophys Res Lett. doi:10.1029/2004GL020778 Google Scholar
  38. Marshall J, Johnson H, Goodman J (2001) A study of the interaction of the North Atlantic Oscillation with ocean circulation. J Clim 14:1399–1421. doi:10.1175/1520-0442(2001)014<1399:ASOTIO>2.0.CO;2 CrossRefGoogle Scholar
  39. Matsumoto K (2007) Biology-mediated temperature control on atmospheric pCO2 and ocean biogeochemistry. Geophys Res Lett. doi:10.1029/2007GL031301 Google Scholar
  40. McGregor S, Gupta AS, England MH (2012) Constraining wind stress products with sea surface height observations and implications for Pacific ocean sea level trend attribution. J Clim 25(23):8164–8176. doi:10.1175/JCLI-D-12-00105.1 CrossRefGoogle Scholar
  41. Meehl GA, Hu A, Arblaster JM, Fasullo J, Trenberth KE (2013) Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation. J Clim 26:7298–7310. doi:10.1175/JCLI-D-12-00548.1 CrossRefGoogle Scholar
  42. Merchant CJ, Embury O, Roberts-Jones J, Fiedler E, Bulgin CE, Corlett GK, Good S, McLaren A, Rayner N, Morak-Bozzo S, Donlon C (2014) Sea surface temperature datasets for climate applications from phase 1 of the European Space Agency Climate Change Initiative (SST CCI). Geosci Data J 1:179–191. doi:10.1002/gdj3.20 CrossRefGoogle Scholar
  43. Merrifield MA (2011) A shift in western tropical Pacific sea level trends during the 1990s. J Clim 24:4126–4138. doi:10.1175/2011JCLI3932.1 CrossRefGoogle Scholar
  44. Meyssignac B, Salas y Melia D, Becker M, Llovel W, Cazenave A (2012) Tropical Pacific spatial trend patterns in observed sea level: internal variability and/or anthropogenic signature? Clim Past 8:787–802. doi:10.5194/cp-8-787-2012 CrossRefGoogle Scholar
  45. Moon JH, Song YT (2013) Sea level and heat content changes in the western North Pacific. J Geophys Res Oceans 118:2014–2022. doi:10.1002/jgrc.20096 CrossRefGoogle Scholar
  46. Moore TS, Matear RJ, Marra J, Clementson L (2007) Phytoplankton variability off the Western Australian Coast: mesoscale eddies and their role in cross-shelf exchange. Deep Sea Res II 54:943–960. doi:10.1016/j.dsr2.2007.02.006 CrossRefGoogle Scholar
  47. Nakamoto S, Kumar SP, Oberhuber JM, Muneyama K, Frouin R (2000) Chlorophyll modulation of sea surface temperature in the Arabian Sea in a mixed-layer isopycnal general circulation model. Geophys Res Lett 27:747–750. doi:10.1029/1999GL002371 CrossRefGoogle Scholar
  48. Palanisamy H, Cazenave A, Delcroix T, Meyssignac B (2015) Spatial trend patterns in the Pacific Ocean sea level during the altimetry era: the contribution of thermocline depth change and internal climate variability. Ocean Dyn. doi:10.1007/s10236-014-0805-7 Google Scholar
  49. Pastor MV, Palter JB, Pelegri JL, Dunne JP (2014) Physical drivers of interannual chlorophyll variability in the eastern subtropical North Atlantic. J Geophys Res 118:3871–3886. doi:10.1002/jgrc.20254 CrossRefGoogle Scholar
  50. Pearce AF, Griffiths RW (1991) The mesoscale structure of the Leeuwin current—a comparison of laboratory models and satellite imagery. J Geophys Res 96:16739–16757. doi:10.1029/91JC01712 CrossRefGoogle Scholar
  51. Penduff T, Juza M, Barnier B, Zika J, Dewar WK, Treguier AM, Molines JM, Audiren N (2011) Sea level expression of intrinsic and forced ocean variabilities at interannual time scales. J Clim 24:5652–5670. doi:10.1175/JCLI-D-11-00077.1 CrossRefGoogle Scholar
  52. Peralta-Ferriz C, Morison JH, Wallace JM, Bonin JA, Zhang JL (2014) Arctic Ocean circulation patterns revealed by GRACE. J Clim 27:1445–1468. doi:10.1175/JCLI-D-13-00013.1 CrossRefGoogle Scholar
  53. Piecuch CG, Ponte RM (2011) Mechanisms of interannual steric sea level variability. Geophys Res Lett. doi:10.1029/2011GL048440 Google Scholar
  54. Piecuch CG, Ponte RM (2012) Importance of circulation changes to Atlantic heat storage rates on seasonal and interannual time scales. J Clim 25:350–362. doi:10.1175/JCLI-D-11-00123.1 CrossRefGoogle Scholar
  55. Piecuch CG, Ponte RM (2013) Buoyancy-driven interannual sea level changes in the tropical South Atlantic. J Phys Oceanogr 43:533–547. doi:10.1175/JPO-D-12-093.1 CrossRefGoogle Scholar
  56. Piecuch CG, Quinn KJ, Ponte RM (2013) Satellite-derived interannual ocean bottom pressure variability and its relation to sea level. Geophys Res Lett 40:3016–3110. doi:10.1002/grl.50549 CrossRefGoogle Scholar
  57. Piecuch CG, Fukumori I, Ponte RM, Wang O (2015) Vertical structure of ocean pressure variations with application to satellite-gravimetric observations. J Atmos Ocean Tech 32:603–613. doi:10.1175/JTECH-D-14-00156.1 CrossRefGoogle Scholar
  58. Ponte RM, Piecuch CG (2014) Interannual bottom pressure signals in the Australian-Antarctic and Bellingshausen basins. J Phys Oceanogr 44(5):1456–1465. doi:10.1175/JPO-D-13-0223.1 CrossRefGoogle Scholar
  59. Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40:1002. doi:10.1029/2000RG000095 CrossRefGoogle Scholar
  60. Purkey SG, Johnson GC, Chambers DP (2014) Relative contributions of ocean mass and deep steric changes to sea level rise between 1993 and 2013. J Geophys Res Oceans 119:7509–7522. doi:10.1002/2014jc010180 CrossRefGoogle Scholar
  61. Qiu B, Chen S (2012) Multidecadal sea level and gyre circulation variability in the northwestern tropical Pacific Ocean. J Phys Oceanogr 42:193–206. doi:10.1175/JPO-D-11-061.1 CrossRefGoogle Scholar
  62. Racault MF, Raitsos DE, Berumen ML, Brewin RJW, Platt T, Sathyendranath S, Hoteit I (2015) Phytoplankton phenology indices in coral reef ecosystems: application to ocean-color observations in the Red Sea. Remote Sens Environ 160:222–234. doi:10.1016/j.rse.2015.01.019 CrossRefGoogle Scholar
  63. Rhein M, Rintoul SR, Aoki S, Campos E, Chambers D, Feely RA, Gulev S, Johnson GC, Josey SA, Kostianoy A, Mauritzen C, Roemmich D, Talley LD, Wang F (2013) Observations: ocean. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 255–316. doi:10.1017/CBO9781107415324.010
  64. Sathyendranath S, Krasemann H (2014) Climate assessment report: Ocean Colour Climate Change Initiative (OC-CCI)—phase one (ESA OC-CCI, http://www.esa-oceancolour-cci.org/?q=documents)
  65. Sathyendranath S, Gouveia AD, Shetye SR, Ravindran P, Platt T (1991) Biological control of surface temperature in the Arabian Sea. Nature 349:54–56. doi:10.1038/349054a0 CrossRefGoogle Scholar
  66. Sathyendranath S, Brewin RJW, Brockmann C, Brotas V, Ciavatta S, Chuprin A, Couto AB, Doerffer R, Dowell M, Grant M, Groom S, Horseman A, Jackson T, Krasemann H, Lavender S, Martinez Vicente V, Mélin Moore TS, Müller D, Regner P, Roy S, Steinmetz F, Swinton J, Taberner M, Thompson A, Valente A, Zühlke M, Brando VE, Feldman G, Franz B, Frouin R, Gould Jr. RW, Hooker S, Kahru M, Mitchell MG, Muller-Karger F, Sosik HM, Voss KJ, Werdell J, Platt T (2016) Creating an ocean-colour time series for use in climate studies: the experience of the Ocean-Colour Climate Change Initiative. Remote Sens Environ. Under reviewGoogle Scholar
  67. Sérazin G, Penduff T, Grégorio S, Barnier B, Molines JM, Terray L (2015) Intrinsic variability of sea level from global ocean simulations: spatiotemporal scales. J Clim 28:4279–4292. doi:10.1175/JCLI-D-14-00554.1 CrossRefGoogle Scholar
  68. Shell KM, Frouim R, Nakamoto S, Somerville RCJ (2003) Atmospheric response to solar radiation absorbed by phytoplankton. J Geophys Res. doi:10.1029/2003JD003440 Google Scholar
  69. Siegel DA, Behrenfeld MJ, Maritorena S, McClain CR, Antoine D, Bailey SW, Bontempi PS, Boss ES, Dierssen HM, Doney SC, Eplee RE Jr, Evans RH, Feldman GC, Fields E, Franz BA, Kuring NA, Mengelt C, Nelson NB, Patt FS, Robinson WD, Sarmiento JL, Swan CM, Werdell PJ, Westberry TK, Wilding JG, Yoder JA (2013) Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission. Remote Sens Environ 135:77–91. doi:10.1016/j.rse.2013.03.025 CrossRefGoogle Scholar
  70. Smith WO, Demaster DJ (1996) Phytoplankton biomass and productivity in the Amazon River plume: correlation with seasonal river discharge. Cont Shelf Res 16:291–319. doi:10.1016/0278-4343(95)00007-N CrossRefGoogle Scholar
  71. Stammer D, Cazenave A, Ponte RM, Tamisiea ME (2013) Causes for contemporary regional sea level changes. Ann Rev Mar Sci 5:21–46. doi:10.1146/annurev-marine-121211-172406 CrossRefGoogle Scholar
  72. Steinmetz F, Deschamps PY, Ramon D (2011) Atmospheric correction in presence of sun glint: application to MERIS. Opt Express 19:9783–9800. doi:10.1364/OE.19.009783 CrossRefGoogle Scholar
  73. Suzuki T, Ishii M (2011) Regional distribution of sea level changes resulting from enhanced greenhouse warming in the model for interdisciplinary research on climate version 3.2. Geophys Res Lett 38:L02601. doi:10.1029/2010GL045693 Google Scholar
  74. Tamisiea ME (2011) Ongoing glacial isostatic contributions to observations of sea level change. Geophys J Int 186:1036–1044. doi:10.1111/j.1365-246X.2011.05116.x CrossRefGoogle Scholar
  75. Thompson LA, Ladd CA (2004) The response of the North Pacific Ocean to decadal variability in atmospheric forcing: wind versus buoyancy forcing. J Phys Oceanogr 34:1373–1386. doi:10.1175/1520-0485(2004)034<1373:TROTNP>2.0.CO;2 CrossRefGoogle Scholar
  76. Timmermann A, McGregor S, Jin FF (2010) Wind effects on past and future regional Sea level trends in the Southern Indo-Pacific*. J Clim 23(16):4429–4437Google Scholar
  77. Turk D, McPhaden MJ, Busalacchi AJ, Lewis MR (2001) Remotely Sensed biological production in the equatorial Pacific. Science 293:471–474. doi:10.1126/science.1056449 CrossRefGoogle Scholar
  78. Visbeck M, Chassignet EP, Curry RG, Delworth TL, Dickson RR, Krahmann K (2003) The ocean’s response to North Atlantic Oscillation variability. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climatic significance and environmental impact. American Geophysical Union, Washington, DC. doi:10.1029/134GM06 Google Scholar
  79. Volkov DL (2014) Do the North Atlantic winds drive the nonseasonal variability of the Arctic Ocean sea level? Geophys Res Lett 41:2041–2047. doi:10.1002/2013GL059065 CrossRefGoogle Scholar
  80. Volkov DL, Landerer FW (2013) Non-seasonal fluctuations of the Arctic Ocean mass observed by the GRACE satellites. J Geophys Res Oceans 118:6451–6460. doi:10.1002/2013JC009341 CrossRefGoogle Scholar
  81. Wilson C, Coles VJ (2005) Global climatological relationships between satellite biological and physical observations and upper ocean properties. J Geophys Res 110:C10001. doi:10.1029/2004JC002724 CrossRefGoogle Scholar
  82. Wu Y, Tang CCL, Sathyendranath S, Platt T (2007) The impact of bio-optical heating on the properties of the upper ocean: a sensitivity study using a 3-D circulation model for the Labrador Sea. Deep Sea Res II 54:2630–2642. doi:10.1016/j.dsr2.2007.08.019 CrossRefGoogle Scholar
  83. Wunsch C, Heimbach P (2007) Practical global oceanic state estimation. Phys D 230:197–208. doi:10.1016/j.physd.2006.09.040 CrossRefGoogle Scholar
  84. Wunsch C, Stammer D (1997) Atmospheric loading and the oceanic “inverted barometer” effect. Rev Geophys 35:79–107. doi:10.1029/96RG03037 CrossRefGoogle Scholar
  85. Wunsch C, Ponte RM, Heimbach P (2007) Decadal trends in sea level patterns: 1993–2004. J Clim 20:5889–5911. doi:10.1175/2007JCLI1840.1 CrossRefGoogle Scholar
  86. Zaneveld JRV, Kitchen JC, Pak H (1981) The influence of optical water types on the heating rate of a constant depth mixed layer. J Geophys Res 86:6426–6428CrossRefGoogle Scholar
  87. Zhai L, Tang CCL, Platt T, Sathyendranath S (2011) Ocean response to attenuation of visible light by phytoplankton in the Gulf of St. Lawrence. J Mar Syst 88:285–297. doi:10.1016/j.jmarsys.2011.05.005 CrossRefGoogle Scholar
  88. Zhang RH (2015) An ocean-biology-induced negative feedback on ENSO as derived from a hybrid coupled model of the tropical Pacific. J Geophys Res Oceans. doi:10.1002/2015JC011305 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.LEGOS, CNES, CNRS, IRD, UPSUniversité de ToulouseToulouseFrance
  2. 2.Atmospheric and Environmental Research, Inc.LexingtonUSA
  3. 3.University of ReadingReadingUK
  4. 4.Plymouth Marine Laboratory (PML)PlymouthUK
  5. 5.National Centre for Earth Observation (NCEO), PMLPlymouthUK

Personalised recommendations