Advertisement

Surveys in Geophysics

, Volume 37, Issue 2, pp 471–502 | Cite as

Subsurface Hydrology of the Lake Chad Basin from Convection Modelling and Observations

  • T. LopezEmail author
  • R. Antoine
  • Y. Kerr
  • J. Darrozes
  • M. Rabinowicz
  • G. Ramillien
  • A. Cazenave
  • P. Genthon
Article

Abstract

In the Lake Chad basin, the quaternary phreatic aquifer (named hereafter QPA) presents large piezometric anomalies referred to as domes and depressions whose depths are ~15 and ~60 m, respectively. A previous study (Leblanc et al. in Geophys Res Lett, 2003, doi: 10.1029/2003GL018094) noticed that brightness temperatures from METEOSAT infrared images of the Lake Chad basin are correlated with the QPA piezometry. Indeed, at the same latitude, domes are ~4–5 K warmer than the depressions. Leblanc et al. (Geophys Res Lett, 2003, doi: 10.1029/2003GL018094) suggested that such a thermal behaviour results from an evapotranspiration excess above the piezometric depressions, an interpretation implicitly assuming that the QPA is separated from the other aquifers by the clay-rich Pliocene formation. Based on satellite visible images, here we find evidence of giant polygons, an observation that suggests instead a local vertical connectivity between the different aquifers. We developed a numerical water convective model giving an alternative explanation for the development of QPA depressions and domes. Beneath the depressions, a cold descending water convective current sucks down the overlying QPA, while, beneath the dome, a warm ascending current produces overpressure. Such a basin-wide circulation is consistent with the water geochemistry. We further propose that the thermal diurnal and evaporation/condensation cycles specific to the water ascending current explain why domes are warmer. We finally discuss the possible influence of the inferred convective circulation on the transient variations of the QPA reported from observations of piezometric levels and GRACE-based water mass change over the region.

Keywords

Lake Chad Piezometric anomalies Vertical permeability Infrared data Convection GRACE 

Notes

Acknowledgments

This research has benefited from the support by the French Space Agency CNES and TOSCA (Terre, Océan, Surfaces continentales, Atmosphère) support. It has also benefited from the support of Commissariat Général au Développement Durable (CGDD) from the French Ministry of Environment, as part of the CEREMA internal research project HYDROGEO. Thanks are due to the “Bureau Gravimétrique International (BGI)/International Association of Geodesy” for providing the EGM model. We thank G. de Marsily and G. Vasseur for their constructive criticisms, and the Editor in Chief for editorial suggestions, which significantly improved the paper. This paper arises from the ISSI Workshop on Remote Sensing and Water Resources.

References

  1. Antoine R, Baratoux D, Rabinowicz M, Fontaine FJ, Bachèlery P, Staudacher T, Saracco G, Finizola A (2009) Thermal infrared images analysis of a quiescent cone on Piton de La Fournaise volcano: evidence for a convective air flow within an unconsolidated soil. J Volcanol Geotherm Res. doi: 10.1016/j.jvolgeores.2008.12.003 Google Scholar
  2. Arad A, Kafri U (1974) Geochemistry of groundwaters in the Chad basin. J Hydrol 25:105–127CrossRefGoogle Scholar
  3. Archambault J (1960) L’alimentation des nappes en Afrique Occidentale. Cpt. R. de l’Hydro., Soc. Hydro. France, 383Google Scholar
  4. Aranyossy J-F, Ndiaye B (1993) Formation of piezometric depressions in the Sahelian zone: study and modelling. J Water Sci. doi: 10.7202/705167ar Google Scholar
  5. ASME (1968) The1967 ASME steam tables. Nav Eng J. doi: 10.1111/j.1559-3584.1968.tb04564.x
  6. Avbovbo AA, Ayoola EO, Osahon GA (1986) Depositional and structural styles in Chad basin of Northeastern Nigeria. Am Assoc Petrol Geol Bull 70(12):1787–1798Google Scholar
  7. Bader J-C, Lemoalle J, Leblanc M (2011) Modèle Hydrologique du Lac Tchad. Hydrol Sci J. doi: 10.1080/02626667.2011.560853 Google Scholar
  8. Balmino G, Vales N, Bonvalot S, Briais A (2011) Spherical harmonic modeling to ultra-high degree of Bouguer and isostatic anomalies. J Geod. doi: 10.1007/s00190-011-0533-4 Google Scholar
  9. Bruinsma S, Lemoine J-M, Biancale R, Valès N (2010) CNES/GRGS 10-day gravity field models (Release 2) and their evaluation. Adv Space Res. doi: 10.1016/j.asr.2009.10.012 Google Scholar
  10. Byrne GF, Begg JE, Fleming PM, Dunin FX (1979) Remotely sensed land cover temperature and soil water status—a brief review. Remote Sens Environ. doi: 10.1016/0034-4257(79)90029-4 Google Scholar
  11. Carroll D (1959) Ion exchange in clays and others minerals. Bull Geol Soc Am. doi: 10.1130/0016-7606(1959)70[749:IEICAO]2.0.CO;2
  12. Cartwright JA, Dewhurst DN (1998) Layer-bound compaction faults in fine-grained sediments. Bull Geol Soc Am. doi: 10.1130/0016-7606(1998)110<1242:LBCFIF>2.3.CO;2
  13. Chapelle FH (2000) The significance of microbial processes in hydrogeology and geochemistry. Hydrogeol J. doi: 10.1007/PL00010973 Google Scholar
  14. Clauser C, Huenges E (1995) Thermal conductivity of rocks and minerals. In: Ahrens TJ (ed) Rock physics and phase relations: a handbook of physical constants. American Geophysical Union, Washington. doi: 10.1029/RF003p0105 Google Scholar
  15. Cretaux J-F, Birkett C (2006) Lake studies from satellite radar altimetry. C R Geosci. doi: 10.1016/j.crte.2006.08.002 Google Scholar
  16. Descloitres M, Chalikakis K, Legchenko A, Moussa AM, Genthon P, Favreau G, Le Coz M, Bouchera M, Oï M (2013) Investigation of groundwater resources in the Komadugu Yobe Valley (Lake Chad basin, Niger) using MRS and TDEM methods. J Afr Earth Sci 87:71–85CrossRefGoogle Scholar
  17. Dieng B, Ledoux E, de Marsily G (1990) Paleohydrogeology of the Senegal sedimentary basin: a tentative explanation of the piezometric depressions. J Hydrol 118:357–371CrossRefGoogle Scholar
  18. Eberschweiler C (1993) Monitoring and management of groundwater resources in the Lake Chad basin: mapping of aquifers water resource management—final report. R35985, CBLT-BRGM, FranceGoogle Scholar
  19. Eldursi K, Branquet Y, Guillou-Frottier L, Marcoux E (2009) Numerical investigation of transient hydrothermal processes around intrusions: heat-transfer and controlled mineralization patterns. Earth Planet Sci Lett. doi: 10.1016/j.epsl.2009.09.009 Google Scholar
  20. Fontaine FJ, Rabinowicz M, Boulègue J, Jouniaux L (2002) Constraints on hydrothermal processes on basaltic edifices: inferences on the conditions leading to hydrovolcanic eruptions at Piton de la Fournaise, Réunion Island, Indian Ocean. Earth Planet Sci Lett. doi: 10.1016/S0012-821X(02)00599-X Google Scholar
  21. Garven G (1995) Continental-scale groundwater flow and geologic processes. Annu Rev Earth Planet Sci 23:89–117CrossRefGoogle Scholar
  22. Garven G, Freeze A (1984a) Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits. 1. Mathematical and numerical model. Am J Sci 284:1085–1124CrossRefGoogle Scholar
  23. Garven G, Freeze A (1984b) Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits. 2. Quantitative results. Am J Sci 284:1125–1174CrossRefGoogle Scholar
  24. Gaston A (1996) The pastoral vegetation of the Lake Chad basin. In: CIRAD (ed) Livestock Atlas of the Lake Chad basin. Centre Technique de Cooperation Agricole et Rurale, Wageningen, pp 39–56Google Scholar
  25. Gay A, Lopez M, Cochonat P, Sermondadaz G (2004) Polygonal faults-furrows system related to early stages of compaction—upper Miocene to recent sediments of the Lower Congo basin. Basin Res. doi: 10.1111/j.1365-2117.2003.00224.x Google Scholar
  26. Genik GJ (1993) Regional framework, structural and petroleum aspects of rift basins in Niger, Chad and the Central African Republic (C.A.R.). Tectonophysics. doi: 10.1016/0040-1951(92)90257-7 Google Scholar
  27. Genthon P, Rabinowicz M, Foucher J-P, Sibuet J-C (1990) Hydrothermal circulation in an anisotropic sedimentary basin: application to the Okinawa Back Arc basin. J Geophys Res. doi: 10.1029/JB095iB12p19175 Google Scholar
  28. Greigert J (1979) Atlas des Eaux Souterraines du Niger—Tome 1, fascicule VII: La Nappe Pliocène et le système phréatique du Manga, BGRMGoogle Scholar
  29. Griffin DL (2006) The late Neogene Sahabi rivers of the Sahara and their climatic and environmental implications for the Chad basin. J Geol Soc. doi: 10.1144/0016-76492005-049 Google Scholar
  30. Guideal R, Bala AE, Ikpokonte AE (2011) Preliminary estimates of the hydraulic properties of the Quaternary aquifer in N’Djaména area, Chad republic. J Appl Sci. doi: 10.3923/jas.2011 Google Scholar
  31. Guillou-Frottier L, Carre C, Bourgine B, Bouchot V, Genter A (2013) Structure of hydrothermal convection in the Upper Rhine Graben as inferred from corrected temperature data and basin-scale numerical models. J Volcanol Geotherm Res. doi: 10.1016/j.jvolgeores.2013.02.008 Google Scholar
  32. Gvirtzman H, Garven G, Gvirtzman G (1997) Thermal anomalies associated with forced and free ground-water convection in the Dead Sea rift valley. Geol Soc Am Bull. doi: 10.1130/0016-7606(1997)109<1167:TAAWFA>2.3.CO;2
  33. Holzbecher E (2004) Free convection in open-top enclosures filled with a porous medium heated from below. Numer Heat Transf Part A Appl. doi: 10.1080/10407780490474726 Google Scholar
  34. Idso SB, Schmugge TJ, Jackson RD, Reginato RJ (1975) The utility of surface temperature measurements for the remote sensing of surface soil waters status. J Geophys Res. doi: 10.1029/JC080i021p03044 Google Scholar
  35. Irvine TF, Duignan MR (1985) Isobaric thermal expansion coefficients for water over large temperature and pressure ranges. Int Commun Heat Mass. doi: 10.1016/0735-1933(85)90040-5 Google Scholar
  36. Isiorho SA, Matisoff G, When KS (1996) Seepage relationships between Lake Chad and the Chad aquifers. Ground Water. doi: 10.1111/j.1745-6584.1996.tb02076.x Google Scholar
  37. Kestin J, Sokolov M, Wakeham WA (1978) Viscosity of liquid water in the range −8 °C to 150 °C. J Phys Chem. doi: 10.1063/1.555581 Google Scholar
  38. Kilty K, Chapman DS (1980) Convective heat transfer in selected geologic situations. Ground Water. doi: 10.1111/j.1745-6584.1980.tb03413.x Google Scholar
  39. Kopf AJ (2002) Significance of mud volcanism. Rev Geophys. doi: 10.1029/2000RG000093 Google Scholar
  40. Leblanc M, Razack M, Dagorne D, Mofor L, Jones C (2003) Application of Meteosat thermal data to map soil infiltrability in the central part of the Lake Chad basin, Africa. Geophys Res Lett. doi: 10.1029/2003GL018094 Google Scholar
  41. Leblanc M, Favreau G, Maley J, Nazoumou Y, Leduc C, Stagnitti F, van Oevelen PJ, Delclaux F, Lemoalle J (2006) Reconstruction of Megalake Chad using shuttle radar topographic mission data. Palaeogeogr Palaeoclimatol. doi: 10.1016/j.palaeo.2006.01.003 Google Scholar
  42. Leduc C (1991) Les ressources en eau du département de Diffa, Projet PNUD-DCTCDNER/86/001/. Direction Départementale de l’Hydraulique de Diffa, DiffaGoogle Scholar
  43. Leduc C, Loireau M (1997) Fluctuations piézométriques et évolution du couvert végétal en zone sahélienne (sud-ouest du Niger). Sustainability of Water Resources under Increasing Uncertainty. In: Proceedings of the Rabat Symposium S1, IAHS, 240Google Scholar
  44. Luo X, Vasseur G (2002) Natural hydraulic craking: numerical model and sensitivity study. Earth Planet Sci Lett. doi: 10.1016/S0012-821X(02)00711-2 Google Scholar
  45. Maduabuchi C, Faye S, Maloszewski P (2006) Isotope evidence of palaeorecharge and palaeoclimate in the deep confined aquifers of the Chad basin, NE Nigeria. Sci Total Environ 370:467–479CrossRefGoogle Scholar
  46. Mahe G, Leduc C, Amani A, Paturel J-E, Girard S, Servat E, Dezetter A (2003) Augmentation récente du ruissellement de surface en region soudano-sahélienne et impact sur les ressources en eau. Hydrology of the Mediterranean and Semiarid Regions, Proceedings of an international symposium, IAHS, 278Google Scholar
  47. Mainsant G, Jongmans D, Chambon G, Larose E, Baillet L (2012) Shear-wave velocity as an indicator for rheological changes in clay materials: lessons from laboratory experiments. Geophys Res Lett. doi: 10.1029/2012GL053159 Google Scholar
  48. McKenzie DP, Roberts JM, Weiss NO (1974) Convection in the earth’s mantle: towards a numerical simulation. J Fluid Mech. doi: 10.1017/S0022112074000784 Google Scholar
  49. Neal JT, Langer AM, Kerr PF (1968) Giant desiccation polygons of Great Basin playas. Bull Geol Soc Am. doi: 10.1130/0016-7606(1968)79[69:GDPOGB]2.0.CO;2
  50. Norton DL (1984) Theory of hydrothermal systems. Annu Rev Earth Planet Sci 12:155–177CrossRefGoogle Scholar
  51. Nwankwo CN, Ekine AS (2010) Geothermal gradients in the Chad basin, Nigeria, from bottom hole temperature logs. Sci Afr 9(1):37–45Google Scholar
  52. Olivry JC, Chouret A, Vuillaume G, Lemoalle J, Briquet JP (1996) Hydrologie du lac Tchad. Monogr Hydrol 12:266Google Scholar
  53. Olugbemiro OR, Ligouis B (1999) Thermal maturity and hydrocarbon potential of the Cretaceous (Cenomanian-Santonian) sediments in the Bornu (Chad) basin, NE Nigeria. Bull Soc Géol France 170(5):759–772Google Scholar
  54. OSS-UNESCO (2001) Les ressources en eau des pays de l’Observatoire du Sahara et du Sahel: évaluation, utilisation et gestion. Rapport UNESCO, p 88Google Scholar
  55. Pouclet A, Durand A (1983) Structures cassantes Cénozoïques d’après les phénomènes volcaniques et néotectoniques au nord-ouest du lac Tcahd (Niger Oriental). Ann Soc Géol Nord CIII (France), pp 143–154Google Scholar
  56. Pribnow D, Schellschmidt R (2000) Thermal tracking of upper crustal fluid flow in the Rhine Graben. Geophys Res Lett. doi: 10.1029/2000GL008494 Google Scholar
  57. Quintard M, Bernard D (1986) Free convection in sediments. In: Burrus J (ed) Thermal modeling in sedimentary basins. Editions Technip, Paris, pp 271–286Google Scholar
  58. Rabinowicz M, Boulègue J, Genthon P (1998a) Two- and three-dimensional modeling of hydrothermal convection in the sedimented Middle Valley segment, Juan de Fuca Ridge. J Geophys Res. doi: 10.1029/98JB01484 Google Scholar
  59. Rabinowicz M, Sempéré J-C, Genthon P (1998b) Thermal convection in a vertical permeable slot: Implications for hydrothermal circulation along mid-ocean ridges. J Geophys Res. doi: 10.1029/1999JB900259 Google Scholar
  60. Ramillien G, Biancale R, Gratton S, Vasseur X, Bourgogne S (2011) GRACE-derived surface mass anomalies by energy integral approach. Application to continental hydrology. J Geod. doi: 10.1007/s00190-010-0438-7 Google Scholar
  61. Ramillien G, Seoane L, Frappart F, Biancale R, Gratton S, Vasseur X, Bourgogne S (2012) Constrained regional recovery of continental water mass time-variations from GRACE-based geopotential anomalies over South America. Surv Geophys. doi: 10.1007/s10712-012-9177-z Google Scholar
  62. Ramillien G, Frappart F, Seoane L (2014) Application of the regional water mass variations from GRACE satellite gravimetry to large-scale water management in Africa. Remote Sens. doi: 10.3390/rs6087379 Google Scholar
  63. Roche MA (1980) Traçage naturel isotopique et salin des eaux du système hydrologique du Lac Tchad, ParisGoogle Scholar
  64. Sabins LF (1999) Remote sensing: principles and interpretation. W. H. Freeman, San FranciscoGoogle Scholar
  65. Schneider JL (1969) Carte hydrogéologique de la République du Tchad, B.R.G.MGoogle Scholar
  66. Schneider JL, Wolff JP (1992) Carte Géologique et Hydrogéologique à 1/1 500 000 de la république du Tchad. Mémoire explicatif, B.R.G.MGoogle Scholar
  67. Schroeter P, Gear D (1973) Etude des ressources en eau du bassin du Lac Tchad en vue d’un programme de développement. FAO-PNUD-CBLT, RomeGoogle Scholar
  68. Schuster M, Roquin C, Duringer P, Brunet M, Cagny M, Fontugne M, Mackaye HT, Vignaud P, Ghienne J-F (2005) Holocene Lake Mega-Chad palaeoshorelines from space. Quat Sci Rev. doi: 10.1016/j.quascirev.2005.02.001 Google Scholar
  69. Schwinka V, Moertel H (1999) Physicochemical properties of illite suspensions after cycles of freezing and thawing. Clays Clay Miner 47:718–725CrossRefGoogle Scholar
  70. Sclater JG, Christie PAF (1980) Continental stretching: an explanation of the post-mid-Cretaceous subsidence of the central North Sea basin. J Geophys Res. doi: 10.1029/JB085iB07p03711 Google Scholar
  71. Serafeimidis K, Anagnostou G (2015) The solubilities and thermodynamic equilibrium of anhydrite and gypsum. Rock Mech Rock Eng. doi: 10.1007/s00603-014-0557-1 Google Scholar
  72. Sylvia DM (2004) Principles and applications of soil microbiology, 2nd edn. Pearson Prentice Hall, New JerseyGoogle Scholar
  73. Turcotte DL, Schubert G (2002) Geodynamics, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  74. Zairi R (2008) Etude géochimique et hydrodynamique de la nappe libre du Bassin du Lac Tchad dans les regions de Diffa (Niger oriental) et du Bornou (nord-est du Nigeria). Ph.D. thesisGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • T. Lopez
    • 1
    Email author
  • R. Antoine
    • 2
  • Y. Kerr
    • 1
  • J. Darrozes
    • 3
  • M. Rabinowicz
    • 3
  • G. Ramillien
    • 4
  • A. Cazenave
    • 4
    • 5
  • P. Genthon
    • 6
  1. 1.Centre d’Etudes Spatiales de la Biosphère, Unité mixte de Recherche Université Toulouse 3, Centre National d’Etudes Spatiales, Centre National de la Recherche Scientifique, Institut de Recherche pour le DéveloppementToulouseFrance
  2. 2.Centre d’Etudes et d’Expertise sur les Risques, l’Environnement, la Mobilité et l’Aménagement, Laboratoire Régional de Rouen, Groupe Sciences de la TerreLe Grand QuevillyFrance
  3. 3.Géosciences Environnement Toulouse, Unité mixte de Recherche Université Toulouse 3, Centre National d’Etudes Spatiales, Centre National de la Recherche Scientifique, Institut de Recherche pour le DéveloppementToulouseFrance
  4. 4.Laboratoire d’Etudes en Géophysique et Océanographie Spatiales, Unité mixte de Recherche Université Toulouse 3, Centre National d’Etudes Spatiales, Centre National de la Recherche Scientifique, Institut de Recherche pour le DéveloppementToulouseFrance
  5. 5.International Space Science Institute (ISSI)BernSwitzerland
  6. 6.Laboratoire Hydrosciences Montpellier, Unité mixte de Recherche Université Montpellier, Institut de Recherche pour le Développement, Centre National de la Recherche ScientifiqueMontpellierFrance

Personalised recommendations