Advertisement

Surveys in Geophysics

, Volume 37, Issue 4, pp 791–809 | Cite as

Worst-Case GPS Scintillations on the Ground Estimated from Radio Occultation Observations of FORMOSAT-3/COSMIC During 2007–2014

  • J. Y. LiuEmail author
  • S. P. Chen
  • W. H. Yeh
  • H. F. Tsai
  • P. K. Rajesh
Article

Abstract

The FORMOSAT-3/COSMIC (F3/C) satellite probes the S4 scintillation index profile of GPS signals by using the radio occultation (RO) technique. In this study, for practical use on the Earth’s surface, a method is developed to convert and integrate the probed RO S4 index, so obtaining the scintillation on the ground. To estimate the worst case, the maximum value on each profile probed by F3/C, which is termed S4max, is isolated. The isolated data are further used to construct the global three-dimensional distributions of S4max for various local times, seasons, solar activities, and locations. The converted S4max for the first time estimates the global distribution of ionospheric scintillations in the GPS L1 band C/A code signal on the ground. The results show that the worst-case scintillations appear within the low-latitude region of ±30°N, peaking around ±20°N magnetic latitude; they begin at 1900 MLT, reach their maximum at 2100 MLT, and vanish by about 0200–0300 MLT. The most pronounced low-latitude scintillation occurs over the South American and African sectors.

Keywords

FORMOSAT-3/COSMIC satellite Radio occultation Ionospheric scintillation S4 index 

Notes

Acknowledgments

The authors thank Prof. Chao-Han Liu at Academia Sinica for useful comments and suggestions. The F3/C S4max data are retrieved from the COSMIC Data Analysis and Archival Center (CDAAC) and the Taiwan Analysis Center for COSMIC (TACC). Taiwan. This study has been partially supported by the project, MOST 103-2628-M-008-001, granted by Ministry of Science and Technology (MOST) to National Central University. The authors thank the Editor in Chief for his suggestions for editorial improvements.

References

  1. Aarons J, Klobuchar JA, Whitney HE, Austen J, Johnson AL, Rino CL (1983) Gigahertz scintillations associated with equatorial patches. Radio Sci 18(3):421–434CrossRefGoogle Scholar
  2. Aarons J, Mendillo M, Yantosca R (1997) GPS phase fluctuations in the equatorial region during sunspot minimum. Radio Sci 32(4):1535–1550CrossRefGoogle Scholar
  3. Abdu MA (2001) Outstanding problems in the equatorial ionosphere thermosphere electrodynamics relevant to spread-F. J Atmos Solar Terr Phys 63:869–884CrossRefGoogle Scholar
  4. Anthes RA, Ector D, Hunt DC, Kuo Y, Rocken C, Schreiner WS, Sokolovskiy SV, Syndergaard S, Wee T, Zeng Z, Bernhardt PA, Dymond KF, Chen Y, Liu H, Manning K, Randel WJ, Trenberth KE, Cucurull L, Healy SB, Ho S, McCormick C, Meehan TK, Thompson DC, Yen NL (2008) The COSMIC/FORMOSAT-3 mission: early results. Bull Am Met Soc 89:313–333CrossRefGoogle Scholar
  5. Arras C, Wickert J, Beyerle G, Heise S, Schmidt T, Jacobi C (2008) A global climatology of ionospheric irregularities derived from GPS radio occultation. Geophys Res Lett 35:L14809. doi: 10.1029/2008GL034158 CrossRefGoogle Scholar
  6. Azpilicueta F, Brunini C, Radicella SM (2006) Global ionospheric maps from GPS observations using modip latitude. Adv Space Res 38(11):2324–2331CrossRefGoogle Scholar
  7. Basu S, MacKenzie E, Basu S (1988) Ionospheric constraints on VHF = UHF communication links during solar maximum and minimum periods. Radio Sci 23:363CrossRefGoogle Scholar
  8. Brahmanandam PS, Uma G, Liu JY, Chu YH, Latha Devi NSMP, Kakinami Y (2012) Global S4 index variations observed using FORMOSAT-3/COSMIC GPS RO technique during a solar minimum year. J Geophys Res 117:A09322. doi: 10.1029/2012JA017966 CrossRefGoogle Scholar
  9. Burke WJ, Gentile LC, Huang CY, Valladares CE, Su SY (2004) Longitudinal variability of equatorial plasma bubbles observed by DMSP and ROCSAT-1. J Geophys Res 109:A12301. doi: 10.1029/2004JA010583 CrossRefGoogle Scholar
  10. Chu YH, Wang CY, Wu KH, Chen KT, Tzeng KJ, Su CL, Feng W, Plane JMC (2014) Morphology of sporadic E layer retrieved from COSMIC GPS radio occultation measurements: wind shear theory examination. J Geophys Res Space Phys 119:2117–2136. doi: 10.1002/2013JA019437 CrossRefGoogle Scholar
  11. Frihagen J, Troim J (1960) Scintillation of the 20 Mc/s signal from the earth satellite 1958δII. J Atmos Terr Phys 18:75–78CrossRefGoogle Scholar
  12. Hocke K, Pavelyev A, Yakovlev O, Barthes L, Jakowski N (1999) Radio occultation data analysis by radio holographic method. J Atmos Solar-Terr Phys 61:1169–1177CrossRefGoogle Scholar
  13. Hook JL, Owren L (1962) The vertical distribution of E-region irregularities deduced from scintillations of satellite radio signals. J Geophys Res 67(13):5353–5357CrossRefGoogle Scholar
  14. Huang CY, Burke WH, Machuzak JS, Gentile LC, Sultan PJ (2002) Equatorial plasma bubbles observed by DMSP satellites during a full solar cycle: toward a global climatology. J Geophys Res 107(A12):1434. doi: 10.1029/2002JA009452 CrossRefGoogle Scholar
  15. Kelley MC (2009) The earth’s ionosphere: plasma physics and electrodynamics, 2nd edn. Academic, San DiegoGoogle Scholar
  16. Mendillo M, Lin B, Aarons J (2000) The application of GPS observations to equatorial aeronomy. Radio Sci 35(3):885–904. doi: 10.1029/1999RS002208 CrossRefGoogle Scholar
  17. Olwendo O (2013) Studies in ionospheric TEC and equatorial scintillation over Kenyan region using GPS receivers, ionospheric monitoring: Africa Workshop, Hermanus, South Africa, 24–25 January 2013Google Scholar
  18. Parthasarathy R, Reid GC (1959) Signal strength recordings of the satellite 1958δ2 (Sputnik III) at College Alaska. Proc IRE 47:78–79Google Scholar
  19. Rastogi RG (1980) Seasonal variation of equatorial spread-F in the American and Indian zones. J Geophys Res 85(2):722–726CrossRefGoogle Scholar
  20. Rino C (2011) The theory of scintillation with applications in remote sensing. Wiley-IEEE Press, HobokenCrossRefGoogle Scholar
  21. Sahai Y, Fagundes PR, Bittencourt JA (2000) Transequatorial F-region ionospheric plasma bubbles: solar cycle effects. J Atmos Sol-Terr Phys 62:1377–1383CrossRefGoogle Scholar
  22. Scherliess L, Fejer BG (1999) Radar and satellite global equatorial F region vertical drift model. J Geophys Res 104:6829–6842. doi: 10.1029/1999JA900025 CrossRefGoogle Scholar
  23. Sokolovskiy S, Schreiner W, Rocken C, Hunt D (2002) Detection of high-altitude ionospheric irregularities with GPS/MET. Geophys Res Lett 29:3. doi: 10.1029/2001GL013398 CrossRefGoogle Scholar
  24. Straus PR, Anderson PC, Danaher JE (2003) GPS occultation sensor observations of ionospheric scintillation. Geophys Res Lett 30(8):1436. doi: 10.1029/2002GL016503 CrossRefGoogle Scholar
  25. Su SY, Liu CH, Ho HH, Chao CK (2006) Distribution characteristics of topside ionospheric density irregularities: equatorial versus midlatitude region. J Geophys Res 111:A06305. doi: 10.1029/2005JA011330 Google Scholar
  26. Sun YY, Liu JY, Chao CK, Chen CH (2015) Intensity of low-latitude nighttime F-region ionospheric density irregularities observed by ROCSAT and ground-based GPS receivers in solar maximum. J Atmos Solar-Terr Phys 123:92–101. doi: 10.1016/j.jastp.2014.12.013 CrossRefGoogle Scholar
  27. Thampi SV, Yamamoto M, Tsunoda RT, Otsuka Y, Tsugawa T, Uemoto J, Ishii M (2009) First observations of large-scale wave structure and equatorial spread-F using CERTO radio beacon on the C/NOFS satellite. Geophys Res Lett 36:L18111. doi: 10.1029/2009GL039887 CrossRefGoogle Scholar
  28. Thébault E, Finlay CC, Beggan CD, Alken P, Aubert J, Barrois O, Bertrand F, Bondar T, Boness A, Brocco L, Canet E, Chambodut A, Chulliat A, Coïsson P, Civet F, Du A, Fournier A, Fratter I, Gillet N, Hamilton B, Hamoudi M, Hulot G, Jager T, Korte M, Kuang W, Lalanne X, Langlais B, Jean- Léger M, Lesur V, Lowes FJ, Macmillan S, Mandea M, Manoj C, Maus S, Olsen N, Petrov V, Ridley V, Rother M, Sabaka TJ, Saturnino D, Schachtschneider R, Sirol O, Tangborn A, Thomson A, Tøffner-Clausen L, Vigneron P, Wardinski I, Zvereva T (2015) International geomagnetic reference field: the 12th generation. Earth Planets Space 67:79. doi: 10.1186/s40623-015-0228-9 CrossRefGoogle Scholar
  29. Uma G, Liu JY, Chen SP, Sun YY, Brahmanandam PS, Lin CH (2012) A comparison of the equatorial spread F derived by the International Reference Ionosphere and the S4 index observed by FORMOSAT-3/COSMIC during the solar minimum period of 2007–2009. Earth Planets Space 64:467–471CrossRefGoogle Scholar
  30. Watanabe S, Oya H (1986) Occurrence characteristics of low latitude ionosphere irregularities observed by impedance probe on board the Hinotori satellite. J Geophys Res 38:125–149Google Scholar
  31. Wickert J et al (2001) Atmosphere sounding by GPS radio occultation: first results from CHAMP. Geophys Res Lett 28(17):3263–3266CrossRefGoogle Scholar
  32. Wu DL, Ao CO, Hajj GA et al (2005) Sporadic E morphology from GPS-CHAMP radio occultation. J Geophys Res 110:A01306. doi: 10.1029/2004JA010701 Google Scholar
  33. Wu DL et al (2006) Remote sounding of atmospheric gravity waves with satellite limb and nadir techniques. Adv Space Res 37:2269–2277CrossRefGoogle Scholar
  34. Yeh WH, Huang CY, Hsiao TY, Chiu TC, Lin CH, Liou YA (2012) Amplitude morphology of GPS radio occultation data for sporadic-E layers. J Geophys Res 117:A11304. doi: 10.1029/2012JA017875 CrossRefGoogle Scholar
  35. Yeh WH, Liu JY, Huang CY, Chen SP (2014) Explanation of the sporadic-E layer formation by comparing FORMOSAT-3/COSMIC data with meteor and wind shear information. J Geophys Res Atmos 119:4568–4579. doi: 10.1002/2013JD020798 CrossRefGoogle Scholar
  36. Yunck T, Liu CH, Ware R (2000) A history of GPS sounding. Terr Atmos Oceanic Sci 11:1–20Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • J. Y. Liu
    • 1
    Email author
  • S. P. Chen
    • 1
  • W. H. Yeh
    • 2
  • H. F. Tsai
    • 3
  • P. K. Rajesh
    • 3
  1. 1.Institute of Space ScienceNational Central UniversityTaoyuanTaiwan
  2. 2.GPS Science and Application Research CenterNational Central UniversityTaoyuanTaiwan
  3. 3.Department of Earth SciencesNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations