Surveys in Geophysics

, Volume 37, Issue 1, pp 149–189 | Cite as

On Earth’s Mantle Constitution and Structure from Joint Analysis of Geophysical and Laboratory-Based Data: An Example

  • Amir Khan


Determining Earth’s structure is a fundamental goal of Earth science, and geophysical methods play a prominent role in investigating Earth’s interior. Geochemical, cosmochemical, and petrological analyses of terrestrial samples and meteoritic material provide equally important insights. Complementary information comes from high-pressure mineral physics and chemistry, i.e., use of sophisticated experimental techniques and numerical methods that are capable of attaining or simulating physical properties at very high pressures and temperatures, thereby allowing recovered samples from Earth’s crust and mantle to be analyzed in the laboratory or simulated computationally at the conditions that prevail in Earth’s mantle and core. This is particularly important given that the vast bulk of Earth’s interior is geochemically unsampled. This paper describes a quantitative approach that combines data and results from mineral physics, petrological analyses of mantle minerals, and geophysical inverse calculations, in order to map geophysical data directly for mantle composition (major element chemistry and water content) and thermal state. We illustrate the methodology by inverting a set of long-period electromagnetic response functions beneath six geomagnetic stations that cover a range of geological settings for major element chemistry, water content, and thermal state of the mantle. The results indicate that interior structure and constitution of the mantle can be well-retrieved given a specific set of measurements describing (1) the conductivity of mantle minerals, (2) the partitioning behavior of water between major upper mantle and transition-zone minerals, and (3) the ability of nominally anhydrous minerals to store water in their crystal structures. Specifically, upper mantle water contents determined here bracket the ranges obtained from analyses of natural samples, whereas transition-zone water concentration is an order-of-magnitude greater than that of the upper mantle and appears to vary laterally underneath the investigated locations.


Mantle structure Composition Temperature Water circulation Mantle melting Electrical conductivity  Phase equilibria Electromagnetic sounding Inversion 



I would like to extend my gratitude to Thomas Shankland for helpful comments throughout and for proofreading the final manuscript. Many thanks also to Ian Ferguson and three anonymous reviewers for critically reviewing the manuscript. Finally, I would like to acknowledge Nathalie Bolfan-Casanova, Konstantin Litasov, and Shun Karato for sharing their figures.


  1. Afonso JC, Fullea J, Yang Y, Connolly JAD, Jones AG (2013a) 3D multi-observable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. II: General methodology and resolution analysis. J Geophys Res 118:1650. doi: 10.1002/jgrb.50123 CrossRefGoogle Scholar
  2. Afonso JC, Fullea J, Griffin WL, Yang Y, Jones AG, Connolly JAD, OReilly SY (2013b) 3D multi-observable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. I: a priori petrological information and geophysical observables. J Geophys Res 118:1. doi: 10.1002/jgrb.50124 Google Scholar
  3. Afonso JC, Fernandez M, Ranalli G, Griffin WL, Connolly JAD (2008) Combined geophysical-petrological modelling of the lithospheric-sublithospheric upper mantle: methodology and applications. Geochem Geophys Geosyst 9:Q05008. doi: 10.1029/2007GC001834 CrossRefGoogle Scholar
  4. Afonso JC, Zlotnik S, Díez P (2015) An efficient and general approach for implementing thermodynamic phase equilibria information in geophysical and geodynamic studies. Geochem Geophys Geosyst 16:3767–3777. doi: 10.1002/2015GC006031 CrossRefGoogle Scholar
  5. Ardia P, Hirschmann MM, Withers AC, Tenner TJ (2012) \(\text{H}_2\text{O}\) storage capacity of olivine at 5–8 GPa and consequences for dehydration partial melting of the upper mantle. Earth Planet Sci Lett 345:104CrossRefGoogle Scholar
  6. Aubaud C, Hauri EH, Hirschmann MM (2004) Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts. Geophys Res Lett 31:L20611. doi: 10.1029/2004GL021341 CrossRefGoogle Scholar
  7. Baba K, Chave AD, Evans RL, Hirth G, Mackie RL (2006) Mantle dynamics beneath the East Pacific Rise at 17 degrees S: insights from the Mantle Electromagnetic and Tomography (MELT) experiment. J Geophys Res 111. doi: 10.1029/2004jb003598
  8. Baba K, Utada H, T-n G, Kasayac T, Shimizua H, Tada N (2010) Electrical conductivity imaging of the Philippine Sea upper mantle using seafloor magnetotelluric data. Phys Earth Planet Int 183:44. doi: 10.1016/j.pepi.2010.09.010 CrossRefGoogle Scholar
  9. Ballhaus C (1995) Is the upper mantle metal-saturated? Earth Planet Sci Lett 132:75CrossRefGoogle Scholar
  10. Banks RJ (1969) Geomagnetic variations and the electrical conductivity of the upper mantle. Geophys J R Astron Soc 17:457CrossRefGoogle Scholar
  11. Becken M, Ritter O (2012) Magnetotelluric studies at the San Andreas Fault zone: implications for the role of fluids. Surv Geophysics 33:65. doi: 10.1007/s10712-011-9144-0 CrossRefGoogle Scholar
  12. Bell DR, Rossmann GR (1992) Water in Earth’s mantle: the role of nominally anhydrous minerals. Science 255:1391CrossRefGoogle Scholar
  13. Bercovici D, Karato S-I (2003) Whole-mantle convection and the transition-zone water filter. Nature 425:39CrossRefGoogle Scholar
  14. Berryman JG (1995) Mixture theories for rock properties. In: Ahrens TJ (ed) American geophysical union handbook of physical constants 205. AGU, New YorkGoogle Scholar
  15. Bina CR (1998) Free energy minimization by simulated annealing with applications to lithospheric slabs and mantle plumes. Pure Appl Geophys 151:605CrossRefGoogle Scholar
  16. Bolfan-Casanova N (2005) Water in the Earth’s mantle. Min Mag 69:227CrossRefGoogle Scholar
  17. Bolfan-Casanova N, Keppler H, Rubie DC (2000) Partitioning of water between mantle phases in the system \(\text{MgOGSiO}_2\text{H}_2\text{O}\) up to 24 GPa: implications for the distribution of water in the Earth’s mantle. Earth Planet Sci Lett 182:209CrossRefGoogle Scholar
  18. Bolfan-Casanova N, McCammon CA, Mackwell SJ (2006) Water in transition zone and lower mantle minerals. In: Jacobsen SD, van der Lee S (eds) Earth’s deep water cycle geophysical monograph series, 168. AGU, New York. doi: 10.1029/168GM06 Google Scholar
  19. Brown JM, Shankland TJ (1981) Thermodynamic parameters in the Earth as determined from seismic profiles. Geophys J Roy Astron Soc 66:579CrossRefGoogle Scholar
  20. Chen J, Inoue T, Yurimoto H, Weidner DJ (2002) Effect of water on olivine wadsleyite phase boundary in the \(\text{(Mg,} \text{Fe)}_2\text{SiO}_4\) system. Geophys Res Lett 29:1875. doi: 10.1029/2001GL014429 CrossRefGoogle Scholar
  21. Cobden L, Goes S, Cammarano F, Connolly JAD (2008) Thermochemical interpretation of one-dimensional seismic reference models for the upper mantle: Evidence for bias due to heterogeneity. Geophys J Int 175:417. doi: 10.1111/j.1365-246X.2008.03903.x CrossRefGoogle Scholar
  22. Connolly JAD (2009) The geodynamic equation of state: What and how. Geophys Geochem Geosys 10:Q10014. doi: 10.1029/2009GC002540 Google Scholar
  23. Dai L, Li H, Hu H, Shan S (2008) Experimental study of grain boundary electrical conductivities of dry synthetic peridotite under high-temperature, high-pressure, and different oxygen fugacity conditions. J Geophys Res 113:B12211. doi: 10.1029/2008JB005820 CrossRefGoogle Scholar
  24. Dasgupta R, Hirschmann MM (2010) The deep carbon cycle and melting in Earths interior. Earth Planet Sci Lett 298:1CrossRefGoogle Scholar
  25. Davies G (2006) Gravitational depletion of the earthly Earths upper mantle and the viability of early plate tectonics. Earth Planet Sci Lett 243:376. doi: 10.1016/j.epsl.2006.01.053 CrossRefGoogle Scholar
  26. Deon F, Koch-Müller M, Rhede D, Wirth R (2011) Water and iron effect on the P-T-x coordinates of the 410-km discontinuity in the Earth’s upper mantle. Contrib Min Petrol. doi: 10.10007/s00410-010-0555-6
  27. Demouchy S, Deloule E, Frost DJ, Keppler H (2005) Pressure and temperature-dependence of water solubility in iron-free wadsleyite. Am Mineralog 90:1084CrossRefGoogle Scholar
  28. Dobson DP, Brodholt JP (2000a) The electrical conductivity of the lower mantle phase magnesiowüstite at high temperatures and pressures. J Geophys Res 105:531CrossRefGoogle Scholar
  29. Dobson DP, Brodholt JP (2000b) The electrical conductivity and thermal profile of the Earth’s mid-mantle. Geophys Res Lett 27:2325CrossRefGoogle Scholar
  30. Drilleau M, Beucler E, Mocquet A, Verhoeven O, Moebs G, Burgos G, Montagner JP, Vacher P (2013) A Bayesian approach to infer radial models of temperature and anisotropy in the transition zone from surface wave data. Geophys J Int. doi: 10.1093/gji/ggt284
  31. Du Frane WL, Roberts JJ, Toffelmier DA, Tyburczy JA (2005) Anisotropy of electrical conductivity in dry olivine. Geophys Res Lett 32:L24315. doi: 10.1029/2005GL023879 CrossRefGoogle Scholar
  32. Duba A (1982) Limits to electrical measurements of silicates. In: Schreyer W (ed) High-pressure researches in geosciences. Schweizerbartische Verlagsbuchhandlung, Stuttgart, p 375381Google Scholar
  33. Duba A, Shankland TJ (1982) Free carbon and electrical conductivity in the earths mantle. Geophys Res Lett 9:1271CrossRefGoogle Scholar
  34. Duba AG, Constable S (1993) The electrical conductivity of lherzolite. J Geophys Res 98:11885CrossRefGoogle Scholar
  35. Ducea MN, Park SK (2000) Enhanced conductivity from sulfide minerals, southern Sierra Nevada, California. Geophys Res Lett 27:2405. doi: 10.1029/2000GL011565 CrossRefGoogle Scholar
  36. Evans RL, Hirth G, Baba K, Forsyth D, Chave A, Mackie R (2005) Geophysical evidence from the MELT area for compositional controls on oceanic plates. Nature 437:249CrossRefGoogle Scholar
  37. Fabrichnaya OB (1999) The phase relations in the Al2O3−SiO2 system: Assessment of thermodynamic properties and phase equilibria at pressures up to 30 GPa. Calphad 23:19CrossRefGoogle Scholar
  38. Férot A, Bolfan-Casanova N (2012) Water storage capacity in olivine to 14 GPa and implications for the water content of the Earth’s upper mantle. Earth Planet Sci Lett 349–350:218. doi: 10.1016/j.epsl.2012.06.022 CrossRefGoogle Scholar
  39. Frost DJ (2003) The structure and sharpness of \(\text{(Mg,} \text{Fe)}_2\text{SiO}_4\) phase transformations in the transition zone. Earth Planet Sci Lett 216:313CrossRefGoogle Scholar
  40. Frost DJ, Dolejs D (2007) Experimental determination of the effect of \(\text{H}_2\text{O}\) on the 410-km seismic discontinuity. Earth Planet Sci Lett 256:182CrossRefGoogle Scholar
  41. Frost DJ, McCammon CA (2008) The redox state of the Earths mantle. Annu Rev Earth Planet Sci 36:389CrossRefGoogle Scholar
  42. Frost DJ, Liebske C, Langenhorst F, McCammon CA, Trónnes RG, Rubie DC (2004) Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle. Nature 428:409CrossRefGoogle Scholar
  43. Fukao Y, Koyama T, Obayashi M, Utada H (2004) Trans-Pacific temperature field in the mantle transition region derived from seismic and electromagnetic tomography. Earth Planet Sci Lett 217:425CrossRefGoogle Scholar
  44. Fullea J, Muller MR, Jones AG (2011) Electrical conductivity of continental lithospheric mantle from integrated geophysical and petrological modeling: application to the Kaapvaal Craton and Rehoboth Terrane, southern Africa. J Geophys Res 116:B10202. doi: 10.1029/2011JB008544 CrossRefGoogle Scholar
  45. Fullea J, Lebedev S, Agius MR, Jones AG, Afonso JC (2012) Lithospheric structure in the Baikal-central Mongolia region from integrated geophysical-petrological inversion of surface-wave data and topographic elevation. Geochem Geophys Geosys 13:Q0AK09. doi: 10.1029/2012GC004138 Google Scholar
  46. Fullea J, Muller MR, Jones AG, Afonso JC (2014) The lithosphere-asthenosphere system beneath Ireland from integrated geophysical-petrological modeling - II: 3D thermal and compositional structure. Lithos 189:49. doi: 10.1016/j.lithos.2013.09.014 CrossRefGoogle Scholar
  47. Gaillard F (2004) Laboratory measurements of electrical conductivity of hydrous and dry silicic melts under pressure. Earth Planet Sci Lett 218:215. doi: 10.1016/S0012-821X(03)00639-3 CrossRefGoogle Scholar
  48. Gaillard F, Marki M, Iacono-Marziano G, Pichavant M, Scaillet B (2008) Carbonatite melts and electrical conductivity in the asthenosphere. Science 32:1363CrossRefGoogle Scholar
  49. Gardés E, Gaillard F, Tarits P (2015) Toward a unified hydrous olivine electrical conductivity law. Geochem Geophys Geosyst 15:4984. doi: 10.1002/2014GC005496 CrossRefGoogle Scholar
  50. Ghosh S, Ohtani E, Litasov KD, Suzuki A, Dobson D, Funkoshi K (2013) Effect of water in depleted mantle on post-spinal transition and implication for 660 km seismic discontinuity. Earth Planet Sci Lett 371–372:103. doi: 10.1016/j.epsl.2013.04.011 CrossRefGoogle Scholar
  51. Guo X, Yoshino T (2013) Electrical conductivity of dense hydrous magnesium silicates with implication for conductivity in the stagnant slab. Earth Planet Sci Lett 369–370:239. doi: 10.1016/j.epsl.2013.03.026 CrossRefGoogle Scholar
  52. Hashin Z, Shtrikman S (1962) A variational approach to the theory of effective magnetic permeability of multiphase materials. J Appl Phys 33:3125CrossRefGoogle Scholar
  53. Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97CrossRefGoogle Scholar
  54. Hauri EH, Gaetani GA, Green TH (2006) Partitioning of water during melting of the Earth”s upper mantle at \(\text{H}_2\text{O}\)—undersaturated conditions. Earth Planet Sci Lett 248:715CrossRefGoogle Scholar
  55. Helffrich GR (2002) Chemical and seismological constraints on mantle heterogeneity. Philos Trans R Soc London Ser A 360:2493. doi: 10.1098/rsta.2002.1085 CrossRefGoogle Scholar
  56. Helffrich GR (2006) Heterogeneity in the mantle-Its creation, evolution and destruction. Tectonophysics 416:23. doi: 10.1016/j.tecto.2005.11.012 CrossRefGoogle Scholar
  57. Helffrich GR, Wood BJ (2001) The Earth’s mantle. Nature 412:501. doi: 10.1038/35087500 CrossRefGoogle Scholar
  58. Hill R (1963) The elastic behaviour of crystalline aggregate. J Mech Phys Solids 11:357CrossRefGoogle Scholar
  59. Hirschmann MM (2006) Water, melting, and the deep Earth \(\text{H}_2\text{O}\) cycle 34:629. doi: 10.1146/
  60. Hirschmann MM (2010) Partial melt in the oceanic low velocity zone. Phys Earth Planet Int 179:60CrossRefGoogle Scholar
  61. Hirschmann MM, Aubaud C, Withers AC (2005) Storage capacity of \(\text{H}_2\text{O}\) in nominally anhydrous minerals in the upper mantle. Earth Planet Sci Lett 236:167CrossRefGoogle Scholar
  62. Hirschmann MM, Tenner T, Aubaud C, Withers AC (2009) Dehydration melting of nominally anhydrous mantle: the primacy of partitioning. Phys Earth Planet Int 176:54. doi: 10.1016/j.pepi.2009.04.001 CrossRefGoogle Scholar
  63. Hirth G, Kohlstedt DL (1996) Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet Sci Lett 144:93CrossRefGoogle Scholar
  64. Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219. doi: 10.1038/385219a0 CrossRefGoogle Scholar
  65. Huang X, Xu Y, Karato S-I (2005) Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite. Nature 434:746CrossRefGoogle Scholar
  66. Inoue T, Yurimoto H, Kudoh Y (1995) Hydrous modified spinel, MgSiO4, a new water reservoir in the mantle transition zone. Geophys Res Lett 22:117CrossRefGoogle Scholar
  67. Inoue T, Wadaa T, Sasakia R, Yurimoto H (2010) Water partitioning in the Earths mantle. Phys Earth Planet Int 183:245. doi: 10.1016/j.pepi.2010.08.003 CrossRefGoogle Scholar
  68. Irifune T (1994) Absence of an aluminous phase in the upper part of the Earths lower mantle. Nature 370:131CrossRefGoogle Scholar
  69. Ito E, Takahashi E (1989) Postspinal transformations in the system Mg2SiO4−Fe2SiO4 and some geophysical implications. J Geophys Res 94:10637CrossRefGoogle Scholar
  70. Ji S, Wang Q, Xia B, Marcotte D (2004) Mechanical properties of multiphase materials and rocks: a phenomenological approach using generalized means. J Struct Geol 26:1377CrossRefGoogle Scholar
  71. Jones AG, Evans RL, Eaton DW (2009) Velocity-conductivity relationships for mantle mineral assemblages in Archean cratonic lithosphere based on a review of laboratory data and Hashin-Shtrikman extremal bounds. Lithos 109:131. doi: 10.1016/j.lithos.2008.10.014 CrossRefGoogle Scholar
  72. Jones AG, Fullea J, Evans RL, Muller MR (2012) Water in cratonic lithosphere: calibrating laboratory-determined models of electrical conductivity of mantle minerals using geophysical and petrological observations. Geochem Geophys Geosyst 13:Q06010. doi: 10.1029/2012GC004055 CrossRefGoogle Scholar
  73. Jones AG (2014) Reconciling different equations for proton conduction using the Meyer-Neldel compensation rule. Geochem Geophys Geosyst 15:337. doi: 10.1002/2013GC004911 CrossRefGoogle Scholar
  74. Jones AG, Afonso JC, Fullea J, Salajegheh F (2014) The lithosphere-asthenosphere system beneath Ireland from integrated geophysical-petrological modelling I: observations, 1D and 2D hypothesis testing. Lithos 189:28. doi: 10.1016/j.lithos.2013.10.033 CrossRefGoogle Scholar
  75. Kaban MK, Tesauro M, Mooney MD, Cloetingh SAPL (2014) Density, temperature, and composition of the North American lithosphere-New insights from a joint analysis of seismic, gravity, and mineral physics data: 1. Density structure of the crust and upper mantle. Geochem Geophys Geosyst 15:4781. doi: 10.1002/2014GC005483 CrossRefGoogle Scholar
  76. Karato S-I (1990) The role of hydrogen in the electrical conductivity of the upper mantle. Nature 347:272CrossRefGoogle Scholar
  77. Karato S-I (2011) Water distribution across the mantle transition zone and its implications for global material circulation. Earth Planet Sci Lett 301:413. doi: 10.1016/j.epsl.2010.11.038 CrossRefGoogle Scholar
  78. Karato S-I, Dai L (2009) Comments on Electrical conductivity of wadsleyite as a function of temperature and water content by Manthilake et al. Phys Earth Planet Int. doi: 10.1016/j.pepi.2009.01.011
  79. Karato S-I, Wang D (2013) Electrical conductivity of minerals and rocks. In: Karato S (ed) Physics and chemistry of the deep earth. Wiley-Blackwell, New York 145CrossRefGoogle Scholar
  80. Katsura T, Yamada H, Kubo A, Shinmei T, Nishikawa O, Yoshino T, Aizawa Y, M-s S, Walter MJ, Ito E, Funakoshi K (2004) Olivine-wadsleyite transition in the system \({(\text{Mg,} \text{Fe})}_2\text{SiO}_4\). J Geophys Res 109:B02209. doi: 10.1029/2003JB002438 Google Scholar
  81. Katsura T, Yokoshi S, Kawabe K, Shatskiy A, Okube M, Fukui H, Ito E, Nozawa A, Funakoshi K (2007) Pressure dependence of electrical conductivity of (Mg,Fe) SiO3 ilmenite. Phys Chem Miner 34:249CrossRefGoogle Scholar
  82. Katsura T, Yoneda A, Yamazaki D, Yoshino T, Ito E (2010) Adiabatic temperature profile in the mantle. Phys Earth Planet Int 183. doi: 10.1016/j.pepi.2010.07.001
  83. Kawamoto T, Hervig RL, Holloway JR (1996) Experimental evidence for a hydrous transition zone in the early Earth’s mantle. Earth Planet Sci Lett 142:587CrossRefGoogle Scholar
  84. Kelbert A, Schultz A, Egbert G (2009) Global electromagnetic induction constraints on transition-zone water content variations. Nature 460. doi: 10.1038/nature08257
  85. Keppler H, Bolfan-Casanova N (2006) Thermodynamics of water solubility and partitioning. Rev Mineral Geochem Min Soc Am 62:193CrossRefGoogle Scholar
  86. Khan A, Shankland TJ (2012) A geophysical perspective on mantle water content and melting: inverting electromagnetic sounding data using laboratory-based electrical conductivity profiles. Earth Planet Sci Lett 317318:27CrossRefGoogle Scholar
  87. Khan A, Connolly JAD, Olsen N (2006) Constraining the composition and thermal state of the mantle beneath Europe from inversion of long-period electromagnetic sounding data. J Geophys Res 111:B10102. doi: 10.1029/2006JB004270 CrossRefGoogle Scholar
  88. Khan A, Connolly JAD, Maclennan J, Mosegaard K (2007) Joint inversion of seismic and gravity data for lunar composition and thermal state. Geophys J Int 168:243. doi: 10.1111/j.1365-246X.2006.03200.x CrossRefGoogle Scholar
  89. Khan A, Boschi L, Connolly JAD (2009) On mantle chemical and thermal heterogeneities and anisotropy as mapped by inversion of global surface wave data. J Geophys Res 114:B09305. doi: 10.1029/2009JB006399 Google Scholar
  90. Khan A, Kuvshinov A, Semenov A (2011) On the heterogeneous electrical conductivity structure of the Earth’s mantle with implications for transition zone water content. J Geophys Res 116:B01103. doi: 10.1029/2010JB007458 Google Scholar
  91. Khan A, Zunino A, Deschamps F (2013) Mantle thermochemical and anisotropic variations imaged beneath Australia from Bayesian inversion of surface-wave phase velocities. J Geophys Res 118. doi: 10.1002/jgrb.50304
  92. Khan A, Connolly JAD, Pommier A, Noir J (2014) Geophysical evidence for melt in the deep lunar interior and implications for lunar evolution. J Geophys Res Planets 119. doi: 10.1002/2014JE004661
  93. Koch S, Kuvshinov A (2013) Global 3-D EM inversion of Sq variations based on simultaneous source and conductivity determination: concept validation and resolution studies. Geophys J Int 195:98. doi: 10.1093/gji/ggt227 CrossRefGoogle Scholar
  94. Kohlstedt DL, Keppler H, Rubie DC (1996) Solubility of water in the \(\alpha, \beta, \gamma\) phases of (Mg,Fe)2SiO4. Contrib Mineral Petrol 123:345CrossRefGoogle Scholar
  95. Koyama T, Shimizu H, Utada H, Ichiki M, Ohtani E, Hae R (2006) Water content in the mantle transition zone beneath the north Pacific derived from the electrical conductivity anomaly. In: Jacobsen SD, van der Lee S (eds) Earths deep water cycle, AGUGeophysicalMonograph, vol 168. American Geophysical Union, p 171179Google Scholar
  96. Koyama T, Khan A, Kuvshinov A (2014) Three-dimensional electrical conductivity structure beneath Australia from inversion of geomagnetic observatory data: evidence for lateral variations in transition-zone temperature, water content and melt. Geophys J Int. doi: 10.1093/gji/ggt455 Google Scholar
  97. Kuskov OL, Kronrod VA, Prokofyev AA, Pavlenkova NI (2014) Thermo-chemical structure of the lithospheric mantle underneath the Siberian craton inferred from long-range seismic profiles. Tectonophysics 615–616:154. doi: 10.1016/j.tecto.2014.01.00 CrossRefGoogle Scholar
  98. Kustowski B, Ekstrom G, Dziewonski AM (2008) Anisotropic shear-wave velocity structure of the Earth’s mantle: a global model. J Geophys Res 113:B06306. doi: 10.1029/2007JB005169 Google Scholar
  99. Kuvshinov A, Olsen N (2006) A global model of mantle conductivity derived from 5 years of CHAMP, rsted, and SACC magnetic data. Geophys Res Lett 33:L18301. doi: 10.1029/2006GL027083 CrossRefGoogle Scholar
  100. Kuvshinov AV, Olsen N, Avdeev DB, Pankratov OV (2002) Electromagnetic induction in the oceans and the anomalous behaviour of coastal C‐responses for periods up to 20 days. Geophys Res Lett 29(12):1595. doi: 10.1029/2001GL014409 CrossRefGoogle Scholar
  101. Landauer R (1952) The electrical resistance of binary metallic mixtures. J sppl Phys 23:779Google Scholar
  102. Litasov KD (2011) Physicochemical conditions for melting in the Earth’s mantle containing a C–O–H fluid (from experimental data). Russ Geol Geophys 52. doi: 10.1016/j.rgg.2011.04.001
  103. Litasov KD, Ohtani E (2002) Phase relations and melt compositions in CMAS-pyrolite-\(\text{H}_2\text{O}\) system up to 25 GPa. Phys Earth Planet Int 134:105CrossRefGoogle Scholar
  104. Litasov KD, Ohtani E (2003) Stability of various hydrous phases in CMAS pyrolite-H2O system up to 25 GPa. Phys Chem Miner 30:147CrossRefGoogle Scholar
  105. Litasov KD, Ohtani E (2007) Effect of water on the phase relations in Earths mantle and deep water cycle. In: Ohtani E (ed) Advances in high-pressure mineralogy, Geol Soc Amer Spec Pap, vol 421, p 115Google Scholar
  106. Litasov KD, Ohtani E (2009) Solidus and phase relations of carbonated peridotite in the system CaO–Al2O3–MgO–SiO2–Na2O–CO2 to the lower mantle depths. Phys Earth Planet Inter 177:46CrossRefGoogle Scholar
  107. Litasov KD, Ohtani E, Sano A (2006) Influence of water on major phase transitions in the Earths mantle. In: Jacobsen SD, van der Lee S (eds) Earths deep water cycle, geophysical monograph series, vol 168. American Geophysical Union, p 95111Google Scholar
  108. Litasov KD, Ohtani E, Kagi H, Jacobsen SD (2007) Temperature dependence and mechanism of hydrogen incorporation in olivine at 12.5-14 GPa. Geophys Res Lett 34:L16314. doi: 10.1029/2007GL030737 CrossRefGoogle Scholar
  109. Litasov KD, Shatskiy A, Ohtani E, Katsura T (2011) Systematic study of hydrogen incorporation into Fe-free wadsleyite. Phys Chem Miner 38:75CrossRefGoogle Scholar
  110. Lu R, Keppler H (1997) Water solubility in pyrope to 100kbar. Contrib Mineral Petrol 129:35CrossRefGoogle Scholar
  111. Manthilake M, Matsuzaki T, Yoshino T, Yamashita S, Ito E, Katsura T (2009) Electrical conductivity of wadsleyite as a function of temperature and water content. Phys Earth Planet Int. doi: 10.1016/j.pepi.2008.06.001 Google Scholar
  112. Maumus J, Bagdassarov N, Schmeling H (2005) Electrical conductivity and partial melting of mafic rocks under pressure. Geochim Cosmochim Acta 69:4703. doi: 10.1016/j.gca.2005.05.010 CrossRefGoogle Scholar
  113. McCammon C (2005) The paradox of mantle redox. Science 308:807CrossRefGoogle Scholar
  114. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087CrossRefGoogle Scholar
  115. Mierdel K, Keppler H, Smyth JR, Langenhorst F (2007) Water solubility in aluminous orthopyroxene and the origin of Earth’s asthenosphere. Science 315:364CrossRefGoogle Scholar
  116. Mosenfelder JL, Deligne LI, Asimow PD, Rossman GR (2006) Hydrogen incorporation in olivine from 2–12 GPa. Am Min 91:285CrossRefGoogle Scholar
  117. Mookherjee M, Karato S-I (2010) Solubility of water in pyrope-rich garnet at high pressures and temperature. Geophys Res Lett 37. doi: 10.1029/2009GL041289
  118. Mosegaard K, Tarantola A (1995) Monte Carlo sampling of solutions to inverse problems. J Geophys Res 100:12431. doi: 10.1029/94JB03097 CrossRefGoogle Scholar
  119. Nakagawa T, Tackley PJ, Deschamps F, Connolly JAD (2009) Incorporating self-consistently calculated mineral physics into thermochemical mantle convection simulations in a 3-D spherical shell and its influence on seismic anomalies in Earth’s mantle. Geochem Geophys Geosyst 10:Q03004. doi: 10.1029/2008GC002280 CrossRefGoogle Scholar
  120. Ni H, Keppler H, Behrens H (2011) Electrical conductivity of hydrous basaltic melts: implications for partial melting in the upper mantle. Contrib Mineral Petrol. doi: 10.1007/s00410-011-0617-4 Google Scholar
  121. Novella D, Frost DJ, Hauri EH, Bureau H, Raepsaet C, Roberge M (2014) The distribution of \(\text{H}_2\text{O}\) between silicate melt and nominally anhydrous peridotite and the onset of hydrous melting in the deep upper mantle. Earth Planet Sci Lett 400:1CrossRefGoogle Scholar
  122. Nover G (2005) Electrical properties of crustal and mantle rocks—a review of laboratory measurements and their explanation. Surv Geophys 26:593. doi: 10.1007/s10712-005-1759-6 CrossRefGoogle Scholar
  123. O’Neill HStC, Rubie DC, Canil D, Geiger CA, Ross CR II, Seifert E, Woodland AB (1993) Ferric iron in the upper mantle and in transition zone assemblages: implications for relative oxygen fugacities in the mantle. In: Takahashi T, Jeanloz R, Rubie DC (eds) Evolution of the earth and planets. American Geophysical Union, Washington, DC, pp 73–88Google Scholar
  124. Olsen N (1998) The electrical conductivity of the mantle beneath Europe derived from C-responses from 3 to 720 hr. Geophys J Int 133:298CrossRefGoogle Scholar
  125. Olsen N (1999) Longperiod (30 days-1 year) electromagnetic sounding and the electrical conductivity of the lower mantle beneath Europe. Geophys J Int 138:179CrossRefGoogle Scholar
  126. Omura K, Kurita K, Kumazawa M (1989) Experimental study of pressure dependence of electrical conductivity of olivine at high temperatures. Phys Earth Planet Int 57:291CrossRefGoogle Scholar
  127. Park SK, Ducea MN (2003) Can in situ measurements of mantle electrical conductivity be used to infer properties of partial melts? J Geophys Res 108:2270. doi: 10.1029/2002JB001899 CrossRefGoogle Scholar
  128. Partzsch GM, Schilling FR, Arndt J (2000) The influence of partial melting on the electrical behaviour of crustal rocks: laboratory examinations. Model calculations and geological interpretations. Tectonophysics 317:189CrossRefGoogle Scholar
  129. Pearson DG, Brenker FE, Nestola F, McNeill J, Nasdala L, Hutchinson MT, Marveev S, Mather K, Silversmit G, Schmitz S, Vekemans B, Vincze L (2014) Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507:221. doi: 10.1038/nature13080 CrossRefGoogle Scholar
  130. Peslier AH (2010) A review of water contents of nominally anhydrous natural minerals in the mantles of Earth, Mars and the Moon. J Volcanol Geotherm Res 197:239CrossRefGoogle Scholar
  131. Peslier AH, Woodland AB, Bell DR, Lazarov M (2010) Olivine water contents in the continental lithosphere and the longevity of cratons. Nature 467:78. doi: 10.1038/nature09317 CrossRefGoogle Scholar
  132. Peslier AH, Bizmis M (2015) Water in Hawaiian peridotite minerals: a case for a dry metasomatized oceanic mantle lithosphere. Geochem Geophys Geosyst 16. doi: 10.1002/2015GC005780
  133. Piazzoni AS, Steinle-Neumann G, Bunge HP, Dolejs D (2007) A mineralogical model for density and elasticity of the Earths mantle. Geochem Geophys Geosyst 8:Q11010. doi: 10.1029/2007GC001697 CrossRefGoogle Scholar
  134. Poli S, Schmidt MW (2002) Petrology of subducted slabs. Ann Rev Earth Planet Sci 30:207CrossRefGoogle Scholar
  135. Poe B, Romano C, Nestola F, Smyth JR (2010) Electrical conductivity anisotropy of dry and hydrous olivine at 8 GPa. Phys Earth Planet Inter 181:103CrossRefGoogle Scholar
  136. Pommier A (2014) Interpretation of magnetotelluric results using laboratory measurements. Surv Geophys 35:41. doi: 10.1007/s10712-013-9226-2 CrossRefGoogle Scholar
  137. Pommier A, Le Trong E (2011) “SIGMELTS”: a web portal for electrical conductivity calculations in geosciences. Comput Geosci 37. doi: 10.1016/j.cageo.2011.01.002
  138. Pommier A, Gaillard F, Malki M, Pichavant M (2010) Reevaluation of the electrical conductivity of silicate melts. Am Mineralog 95:284CrossRefGoogle Scholar
  139. Püthe C, Kuvshinov A, Khan A, Olsen N (2015) A new model of Earth’s radial conductivity structure derived from over 10 years of satellite and observatory magnetic data. Geophys J Int 203(3):1864–1872. doi: 10.1093/gji/ggv407 CrossRefGoogle Scholar
  140. Rauch M, Keppler H (2002) Water solubility in orthopyroxene. Contrib Mineralog Petrol 78:99Google Scholar
  141. Ricard Y, Mattern E, Matas J (2005) Synthetic tomographic images of slabs from mineral physics. In: van der Hilst RD (ed) Earths deep mantle: structure, composition, and evolution, geophys. monogr. ser., vol 160. AGU, Washington, DC, , pp 283–300Google Scholar
  142. Ringwood A (1975) Composition and structure of the earth’s mantle. McGraw-Hill, New YorkGoogle Scholar
  143. Ritsema J, Xu W, Stixrude L, Lithgow-Bertelloni C (2009) Estimates of the transition zone temperature in a mechanically mixed upper mantle. Earth Planet Sci Lett 244. doi: 10.1016/j.epsl.2008.10.024
  144. Ritsema J, van Heijst HJ, Deuss A, Woodhouse JH (2011) S40RTS: a degree-40 shear velocity model for the mantle from new Rayleigh wave dispersion, teleseismic travel times, and normal-mode splitting function measurements. Geophys J Int 184:1223. doi: 10.1111/j.1365-246X.2010.04884.x CrossRefGoogle Scholar
  145. Roberts JJ, Tyburczy JA (1993) Impedance spectroscopy of single and polycrystalline olivine: evidence for grain boundary transport. Phys Chem Miner 20:19CrossRefGoogle Scholar
  146. Roberts JJ, Tyburczy JA (1999) Partial-melt electrical conductivity: influence of melt composition. J Geophys Res 104:7055CrossRefGoogle Scholar
  147. Romano C, Poe BT, Kreidie N, McCammon CA (2006) Electrical conductivities of pyrope-almandine garnets up to 19 GPa and \(1700\,^\circ\text{C}\). Am Mineral 91:1371CrossRefGoogle Scholar
  148. Romano C, Poe BT, Tyburczy J, Nestola F (2009) Electrical conductivity of hydrous wadsleyite. Eur J Mineral 21:615622CrossRefGoogle Scholar
  149. Rohrbach A, Ballhaus C, Golla-Schindler U, Ulmer P, Kamenetsky VS, Kuzmin DV (2007) Metal saturation in the upper mantle. Nature 449:456CrossRefGoogle Scholar
  150. Sakurai M, Tsujino N, Sakuma H, Kawamura K, Takahashi E (2014) Effects of Al content on water partitioning between orthopyroxene and olivine: implications for lithosphere-asthenosphere. Earth Planet Sci Lett 400:284. doi: 10.1016/j.epsl.2014.05.041 CrossRefGoogle Scholar
  151. Samrock F, Kuvshinov A (2013) Tippers at island observatories: can we use them to probe electrical conductivity of the Earth’s crust and upper mantle? Geophys Res Lett 40:824Google Scholar
  152. Schaeffer AJ, Lebedev S (2013) Global shear-speed structure of the upper mantle and transition zone. Geophys J Int 194:417–449CrossRefGoogle Scholar
  153. Schock RN, Duba AG, Shankland TJ (1989) Electrical conduction in olivine. J Geophys Res 94:5829CrossRefGoogle Scholar
  154. Schultz A, Kurtz RD, Chave AD, Jones AG (1993) Conductivity discontinuities in the upper mantle beneath a stable craton. Geophys Res Lett 20:2941. doi: 10.1029/93GL02833 CrossRefGoogle Scholar
  155. Seifert KF, Will G, Voigt R (1982) Electrical conductivity measurements on synthetic pyroxenes MgSiO3 FeSiO3 at high pressures and temperatures under defined thermodynamic conditions. In: Schreyer W (ed) High-pressure researches in geoscience. Stuttgart, Germany: Schweizerbart, p 41932Google Scholar
  156. Shankland TJ (1975) Electrical conduction in rocks and minerals: parameters for interpretation. Phys Earth Planet Int 10:209CrossRefGoogle Scholar
  157. Shankland TJ (1979) Physical properties of minerals and melts. Rev Geophys Space Phys 17:792CrossRefGoogle Scholar
  158. Shankland TJ, Waff HS (1977) Partial melting and electrical conductivity anomalies in the upper mantle. J Geophys Res 82:54095417Google Scholar
  159. Shankland TJ, Ander ME (1983) Electrical conductivity, temperature, and fluids in the lower crust. J Geophys Res 88:9475CrossRefGoogle Scholar
  160. Shankland TJ, Duba A (1990) Standard electrical conductivity of isotropic, homogeneous olivine in the temperature range 1200–1500 \(^\circ\)C. Geophys J Int 103:25CrossRefGoogle Scholar
  161. Shankland TJ, O’Connell RJ, Waff HS (1981) Geophysical constraints on partial melt in the upper mantle. Rev Geophys Space Phys 19:394CrossRefGoogle Scholar
  162. Shapiro NM, Ritzwoller MH (2004) Thermodynamic constraints on seismic inversions. Geophys J Int 157:1175. doi: 10.1111/j.1365-246X.2004.02254.x CrossRefGoogle Scholar
  163. Simpson F (2001) Resistance to mantle flow inferred from the electromagnetic strike of the Australian upper mantle. Nature 412:632–635CrossRefGoogle Scholar
  164. Smyth JR (1987) \(\beta\)-Mg\(_2\)SiO\(_4\) a potential host for water in the mantle? Am Mineralog 72:1051Google Scholar
  165. Smyth JR, Frost DJ (2002) The effect of water on the 410-km discontinuity: an experimental study. Geophys Res Lett 29:1485. doi: 10.1029/2001GL014418 CrossRefGoogle Scholar
  166. Smyth JR, Jacobsen SD (2006) Nominally anhydrous minerals and Earth’s deep water cycle. In: van der Lee S, Jacobsen SD (eds) Earth’s deep water cycle. American Geophysical Union Monograph Series, vol 168, p 1Google Scholar
  167. Sobolev SV, Babeyko A (1994) Modeling of mineralogical composition, density and elastic wave velocities in anhydrous magmatic rocks. Surv Geophys 15:515CrossRefGoogle Scholar
  168. Stixrude L, Lithgow-Bertelloni C (2005) Mineralogy and elasticity of the oceanic upper mantle: origin of the low-velocity zone. J Geophys Res 110:B03204. doi: 10.1029/2004JB002965 Google Scholar
  169. Stixrude L, Lithgow-Bertelloni C (2011) Thermodynamics of mantle minerals II. Phase equilibria. Geophys J Int 184:1180. doi: 10.1111/j.1365-246X.2010.04890.x CrossRefGoogle Scholar
  170. Tackley PJ (2000) Mantle convection and plate tectonics: towards an integrated physical and chemical theory. Science 288:2002CrossRefGoogle Scholar
  171. Tackley PJ (2012) Dynamics and evolution of the deep mantle resulting from thermal, chemical, phase and melting effects. Earth Sci Rev 110:1. doi: 10.1016/j.earscirev.2011.10.001 CrossRefGoogle Scholar
  172. Tackley PJ, Xie S, Nakagawa T, Hernlund JW (2005) Numerical and laboratory studies of mantle convection: philosophy, accomplishments and thermo-chemical structure and evolution. In: Earth’s deep mantle: structure, composition, and evolution, geophysical monograph series vol 160, p 83. AGU. doi: 10.1029/160GM07
  173. Tarantola A, Valette B (1982) Inverse problems = quest for information. J Geophys 50:159Google Scholar
  174. ten Grotenhuis SM, Drury MR, Peach CJ, Spiers CJ (2004) Electrical properties of fine-grained olivine: evidence for grain boundary transport. J Geophys Res 109:B06203. doi: 10.1029/2003JB002799 Google Scholar
  175. ten Grotenhuis SM, Drury MR, Spiers CJ, Peach CJ (2005) Melt distribution in olivine rocks based on electrical conductivity measurement. J Geophys Res 110:B12201. doi: 10.1029/2004JB003462 CrossRefGoogle Scholar
  176. Tenner TJ, Hirschmann MM, Withers AC, Hervig RL (2009) Hydrogen partitioning between nominally anhydrous upper mantle minerals and melt between 3 and 5 GPa and applications to hydrous peridotite partial melting. Chem Geol 262:42CrossRefGoogle Scholar
  177. Tenner TJ, Hirschmann MM, Withers AC, Ardia P (2012) \(\text{H}_2\text{O}\) storage capacity of olivine and low-Ca pyroxene from 10 to 13 GPa: consequences for dehydration melting above the transition zone. Contrib Mineral Petrol 163:297CrossRefGoogle Scholar
  178. Toffelmier DA, Tyburczy JA (2007) Electromagnetic detection of a 410-km-deep melt layer in the southwestern United States. Nature 441. doi: 10.1038/nature05922
  179. Tyburczy JA (2007) Properties of rocks and minerals the electrical conductivity of rocks, minerals and the Earth. Treatise Geophys 2:631CrossRefGoogle Scholar
  180. Tyburczy JA, Waff HS (1983) Electrical conductivity of molten basalt and andesite to 25 kilobars pressure: geophysical significance and implications for charge transport and melt structure. J Geophys Res 88:2413CrossRefGoogle Scholar
  181. Tyburczy JA, Fisler DK (1995) Electrical properties of minerals and melts. Mineral physics and crystallography: a handbook of physical constants. AGU Ref Shelf 2:185CrossRefGoogle Scholar
  182. Utada H, Koyama T, Shimizu H, Chave AD (2003) A semi-global reference model for electrical conductivity in the mid-mantle beneath the North Pacific region. Geophys Res Lett 30:1194. doi: 10.1029/2002GL016092 CrossRefGoogle Scholar
  183. Utada H, Koyama T, Obayashi M, Fukao Y (2009) A joint interpretation of electromagnetic and seismic tomography models suggests the mantle transition zone below Europe is dry. Earth Planet Sci Lett 281:249CrossRefGoogle Scholar
  184. Vacher P, Verhoeven O (2007) Modelling the electrical conductivity of iron-rich minerals for planetary applications. Planet Space Sci 55:455. doi: 10.1016/j.pss.2006.10.003 CrossRefGoogle Scholar
  185. Velimský J (2010) Electrical conductivity in the lower mantle: constraints from CHAMP satellite data by time domain EM induction modelling. Phys Earth Planet Inter 180:111. doi: 10.1016/j.pepi.2010.02.007 CrossRefGoogle Scholar
  186. Verhoeven O, Mocquet A, Vacher P, Rivoldini A, Menvielle M, Arrial PA, Choblet G, Tarits P, Dehant V, Van Hoolst T (2009) Constraints on thermal state and composition of the earths lower mantle from electromagnetic impedances and seismic data. J Geophys Res 114:B03302. doi: 10.1029/2008JB005678 Google Scholar
  187. Waff HS (1974) Theoretical considerations of electrical conductivity in a partially molten mantle and implications for geothermobarometry. J Geophys Res 79:4003CrossRefGoogle Scholar
  188. Wannamaker PE, Caldwell TG, Jiracek GR, Maris V, Hill GJ, Ogawa Y, Bibby HM, Bennie SL, Heise W (2009) Fluid and deformation regime of an advancing subduction system at Marlborough New Zealand. Nature 460:733736CrossRefGoogle Scholar
  189. Watson HC, Roberts JJ, Tyburczy JA (2010) The effect of conductive grain boundary impurities on electrical conductivity in polycrystalline olivine. Geophys Res Lett 37:L02303. doi: 10.1029/2009GL041566 CrossRefGoogle Scholar
  190. Watt JP, Davies GF, O’Connell RJ (1976) The elastic properties of composite materials. Rev Geophys Space Phys 14:541CrossRefGoogle Scholar
  191. Weidelt P (1972) The inverse problem of geomagnetic induction. Z Geophys 38:257Google Scholar
  192. Williams Q, Hemley RJ (2001) Hydrogen in the deep Earth. Ann Rev Earth Planet Sci 29:365CrossRefGoogle Scholar
  193. Withers AC, Hirschmann MM (2007) \(\text{H}_2\text{O}\) storage capacity of \(\text{ MgSiO}_3\) clinoenstatite at 8–13GPa, \(1100-1400{\,}^\circ\text{C}\). Contrib Mineral Petrol 154:663CrossRefGoogle Scholar
  194. Withers AC, Wood BJ, Carroll MR (1998) The OH content of pyrope at high pressure. Chem Geol 149:161CrossRefGoogle Scholar
  195. Wood BJ (1995) The effect of \(\text{H}_2\text{O}\) on the 410-kilometer seismic discontinuity. Science 268:74CrossRefGoogle Scholar
  196. Worzewski T, Jegen M, Kopp H, Brasse H, Castillo WT (2011) Magnetotelluric image of the fluid cycle in the Costa Rican subduction zone. Nat Geosci 4:108. doi: 10.1038/NGEO1041 CrossRefGoogle Scholar
  197. Wu X, Zhanga B, Xua J, Katsura T, Zhaid S, Yoshino T, Manthilake G, Shatskiy A (2010) Electrical conductivity measurements of periclase under high pressure and high temperature. Physica B 405. doi: 10.1016/j.physb.2009.08.036
  198. Xie S, Tackley PJ (2004) Evolution of helium and argon isotopes in a convecting mantle. Phys Earth Planet Inter 146:417. doi: 10.1016/j.pepi.2004.04.003 CrossRefGoogle Scholar
  199. Xu Y, Shankland TJ (1999) Electrical conductivity of orthopyroxene and its high pressure phases. Geophys Res Lett 26:2645CrossRefGoogle Scholar
  200. Xu Y, McCammon C, Poe BT (1998) The effect of alumina on the electrical conductivity of silicate perovskite. Science 282:922CrossRefGoogle Scholar
  201. Xu Y, Shankland TJ, Poe BT (2000) Laboratory-based electrical conductivity in the Earth’s mantle. J Geophys Res 108:2314CrossRefGoogle Scholar
  202. Xu W, Lithgow-Bertelloni C, Stixrude L, Ritsema J (2008) The effect of bulk composition and temperature on mantle seismic structure. Earth Planet Sci Lett 275:70. doi: 10.1016/j.epsl.2008.08.012 CrossRefGoogle Scholar
  203. Yang X (2011) Origin of high electrical conductivity in the lower continental crust: a review. Surv Geophys 32:875CrossRefGoogle Scholar
  204. Yang X, Heidelbach F (2012) Grain size effect on the electrical conductivity of clinopyroxene. Contrib Mineral Petrol 163:939CrossRefGoogle Scholar
  205. Yoshino T (2010) Laboratory electrical conductivity measurement of mantle minerals. Surv Geophys 31:163. doi: 10.1007/s10712-009-9084-0 CrossRefGoogle Scholar
  206. Yoshino T, Katsura T(2009a) Reply to comments on Electrical conductivity of wadsleyite as a function of temperature and water content by Manthilake et al. Phys Earth Planet Inter. doi: 10.1016/j.pepi.2009.01.012
  207. Yoshino T, Katsura T (2009b) Effect of iron content on electrical conductivity of ringwoodite, with implications for electrical structure in the transition zone. Phys Earth Planet Int. doi: 10.1016/j.pepi.2008.09.015
  208. Yoshino T, Katsura T (2012a) Re-evaluation of electrical conductivity of anhydrous and hydrous wadsleyite. Earth Planet Sci Lett 337–338:56. doi: 10.1016/j.epsl.2012.05.023 CrossRefGoogle Scholar
  209. Yoshino T, Katsura T (2012b) Corrigendum. Earth Planet Sci Lett 357–358:422. doi: 10.1016/j.epsl.2012.10.020 CrossRefGoogle Scholar
  210. Yoshino T, Katsura T (2013) Electrical conductivity of mantle minerals: role of water in conductivity anomalies. Ann Rev Earth Planet Sci 41:605. doi: 10.1146/annurev-earth-050212-124022 CrossRefGoogle Scholar
  211. Yoshino T, Takuya M, Yamashita S, Katsura T (2006) Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere. Nature 443:973CrossRefGoogle Scholar
  212. Yoshino T, Manthilake G, Matsuzaki T, Katsura T (2008a) Dry mantle transition zone inferred from the conductivity of wadsleyite and ringwoodite. Nature 451. doi: 10.1038/nautre06427
  213. Yoshino T, Nishi M, Matsuzaki T, Yamazaki D, Katsura T (2008b) Electrical conductivity of majorite garnet and its implications for electrical structure in the mantle transition zone. Phys Earth Planet Int. doi: 10.1016/j.pepi.2008.04.009
  214. Yoshino T, Matsuzaki T, Shatskiy A, Katsura T (2009) The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle. Earth Planet Sci Lett. doi: 10.1016/j.epsl.2009.09.032
  215. Yoshino T, Laumonier M, McIsaac E, Katsura T (2010) Electrical conductivity of basaltic and carbonatite melt-bearing peridotites at high pressures: implications for melt distribution and melt fraction in the upper mantle. Earth Planet Sci Lett 295:593CrossRefGoogle Scholar
  216. Yoshino T, Ito E, Katsura T, Yamazaki D, Shan S, Guo X, Nishi M, Higo Y, Funakoshi K-I (2011) Effect of iron content on electrical conductivity of ferropericlase with implications for the spin transition pressure. J Geophys Res 116:B04202. doi: 10.1029/2010JB007801 Google Scholar
  217. Yoshino T, McIsaac E, Laumonier M, Katsura T (2012a) Electrical conductivity of partial molten carbonate peridotite. Phys Earth Planet Int 194195. doi: 10.1016/j.pepi.2012.01.005
  218. Yoshino T, Shimojuku A, Shan S, Guo X, Yamazaki D, Ito E, Higo Y, Funakoshi K (2012b) Effect of temperature, pressure and iron content on the electrical conductivity of olivine and its high-pressure polymorphs. J Geophys Res 117:B08205. doi: 10.1029/2011JB008774 Google Scholar
  219. Yoshino T, Shimojoku A, Li D (2014) Electrical conductivity of stishovite as a function of water content. Phys Earth Planet Int 227:48. doi: 10.1016/j.pepi.2013.12.003 CrossRefGoogle Scholar
  220. Young TE, Green HW, Hofmeister AM, Walker D (1993) Infrared spectroscopic investigation of hydroxyl in—(Mg,Fe)2 SiO4 and coexisting olivine: implications for mantle evolution and dynamics. Phys Chem Miner 19:409CrossRefGoogle Scholar
  221. Zhang B, Yoshino T, Wu X, Matsuzaki T, Shan S, Katsura T (2012) Electrical conductivity of enstatite as a function of water content: Implications for the electrical structure in the upper mantle. Earth Planet Sci Lett 357–358:11. doi: 10.1016/j.epsl.2012.09.020 CrossRefGoogle Scholar
  222. Zunino A, Connolly JAD, Khan A (2011) Precalculated phase equilibrium models for geophysical properties of the crust and mantle as a function of composition. Geochem Geophys Geosys 12:Q04001. doi: 10.1029/2010GC003304 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institute of GeophysicsETH ZürichZürichSwitzerland

Personalised recommendations