Advertisement

Surveys in Geophysics

, Volume 37, Issue 1, pp 27–45 | Cite as

Earth’s Electromagnetic Environment

  • Catherine ConstableEmail author
Article

Abstract

The natural spectrum of electromagnetic variations surrounding Earth extends across an enormous frequency range and is controlled by diverse physical processes. Electromagnetic (EM) induction studies make use of external field variations with frequencies ranging from the solar cycle which has been used for geomagnetic depth sounding through the 10\(^{-4}\)–10\(^4\) Hz frequency band widely used for magnetotelluric and audio-magnetotelluric studies. Above 10\(^4\) Hz, the EM spectrum is dominated by man-made signals. This review emphasizes electromagnetic sources at \(\sim\)1 Hz and higher, describing major differences in physical origin and structure of short- and long-period signals. The essential role of Earth’s internal magnetic field in defining the magnetosphere through its interactions with the solar wind and interplanetary magnetic field is briefly outlined. At its lower boundary, the magnetosphere is engaged in two-way interactions with the underlying ionosphere and neutral atmosphere. Extremely low-frequency (3 Hz–3 kHz) electromagnetic signals are generated in the form of sferics, lightning, and whistlers which can extend to frequencies as high as the VLF range (3–30 kHz).The roughly spherical dielectric cavity bounded by the ground and the ionosphere produces the Schumann resonance at around 8 Hz and its harmonics. A transverse resonance also occurs at 1.7–2.0 kHz arising from reflection off the variable height lower boundary of the ionosphere and exhibiting line splitting due to three-dimensional structure. Ground and satellite observations are discussed in the light of their contributions to understanding the global electric circuit and for EM induction studies.

Keywords

Electromagnetism Geomagnetic spectrum Ionosphere  Schumann resonance Sferics Lightning Magnetotellurics Audio-magnetotellurics 

Notes

Acknowledgments

I thank Ciaran Beggan, Steven Constable, Monika Korte, and Tom Nielsen for useful discussions, the Alexander von Humboldt Foundation for funding that supported this endeavor, and both administrative and research staff at GFZ, Potsdam for their hospitality, and collegial support. I would also like to acknowledge the unprecedented opportunity provided by the 2014 EM Induction workshop organizing committee to work on a review outside my usual area of expertise. I very much appreciated the useful comments on both clarity and content from two anonymous reviewers.

References

  1. Aplin KL, Harrison RG, Rycroft MJ (2008) Investigating Earth’s atmospheric electricity: a role model for planetary studies. Space Sci Rev 137(1–4):11–27CrossRefGoogle Scholar
  2. Backus G, Parker RL, Constable C (1996) Foundations of geomagnetism, digitally printed 1st pbk. edn. Cambridge University Press, CambridgeGoogle Scholar
  3. Backus GE (1983) Application of mantle filter theory to the magnetic jerk of 1969. Geophys J Int 74(3):713–746Google Scholar
  4. Bastani M, Pedersen LB (2001) Estimation of magnetotelluric transfer functions from radio transmitters. Geophysics 66(4):1038–1051CrossRefGoogle Scholar
  5. Baumgaertner AJG, Thayer JP, Neely RR, Lucas G (2013) Toward a comprehensive global electric circuit model: atmospheric conductivity and its variability in CESM1(WACCM) model simulations. J Geophys Res Atmos 118(16):9221–9232CrossRefGoogle Scholar
  6. Bazilevskaya GA, Usoskin IG, Flückiger EO, Harrison RG, Desorgher L, Bütikofer R, Krainev MB, Makhmutov VS, Stozhkov YI, Svirzhevskaya AK, Svirzhevsky NS, Kovaltsov GA (2008) Cosmic ray induced ion production in the atmosphere. Space Sci Rev 137(1–4):149–173CrossRefGoogle Scholar
  7. Bering EA III, Few AA, Benbrook JR (1998) The global electric circuit. Phys Today 51(10):24CrossRefGoogle Scholar
  8. Boccippio DJ, Williams ER, Heckman SJ, Lyons WA, Baker IT, Boldi R (1995) Sprites, ELF transients, and positive ground strokes. Science 269(5227):1088–1091CrossRefGoogle Scholar
  9. Boccippio DJ, Koshak W, Blakeslee R, Driscoll K, Mach D, Buechler D, Boeck W, Christian HJ, Goodman SJ (2000) The optical transient detector (OTD): instrument characteristics and cross-sensor validation. J Atmos Ocean Technol 17(4):441–458CrossRefGoogle Scholar
  10. Chapman S, Bartels J (1940) Geomagnetism, vol 1. Clarendon Press, OxfordGoogle Scholar
  11. Chave AD, Jones AG (eds) (2012) The magnetotelluric method. Theory and practice. Cambridge University Press, CambridgeGoogle Scholar
  12. Constable CG, Constable SC (2004) Satellite magnetic field measurements: applications in studying the deep earth. In: The state of the planet: frontiers and challenges in geophysics. American Geophysical Union, International Union of Geodesy and Geophysics, Washington, DCGoogle Scholar
  13. Constable S (2007) Geomagnetism. In: Schubert G, Kono M (eds) Treatise on geophysics. Elsevier, Amsterdam, pp 237–276CrossRefGoogle Scholar
  14. Constable S (2011) EM instrumentation. In: Gupta HK (ed) Encyclopedia of solid earth geophysics. Springer, Dordrecht, pp 604–608CrossRefGoogle Scholar
  15. Constable SC, Parker RL, Constable CG (1987) Occam’s inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 52(3):289–300CrossRefGoogle Scholar
  16. Daglis IA, Tsurutani BT, Gonzalez WD, Kozyra JU, Orsini S, Cladis J, Kamide Y, Henderson MG, Vassiliadis D (2007) Key features of intense geospace storms–a comparative study of a solar maximum and a solar minimum storm. Planet Space Sci 55(1–2):32–52CrossRefGoogle Scholar
  17. Everett ME, Constable S, Constable CG (2003) Effects of near-surface conductance on global satellite induction responses. Geophys J Int 153(1):277–286CrossRefGoogle Scholar
  18. Ferguson IJ (2012) Instrumentation and field procedures. In: Chave AD, Jones AG (eds) The magnetotelluric method. Cambridge University Press, Cambridge, pp 421–473CrossRefGoogle Scholar
  19. Ferguson IJ, Jones AG, Chave AD (2012) Case histories and geological applications. In: Chave AD, Jones AG (eds) The magnetotelluric method. Cambridge University Press, Cambridge, pp 480–536CrossRefGoogle Scholar
  20. Fischbach E, Kloor H, Langel RA, Lui ATY, Peredo M (1994) New geomagnetic limits on the photon mass and on long-range forces coexisting with electromagnetism. Phys Rev Lett 73(4):514–517CrossRefGoogle Scholar
  21. Franz RC, Nemzek RJ, Winckler JR (1990) Television image of a large upward electrical discharge above a thunderstorm system. Science 249(4964):48–51CrossRefGoogle Scholar
  22. Füllekrug M, Constable S (2000) Global triangulation of intense lightning discharges. Geophys Res Lett 27(3):333–336CrossRefGoogle Scholar
  23. García X, Jones AG (2002) Atmospheric sources for audio-magnetotelluric (AMT) sounding. Geophysics 67(2):448–458CrossRefGoogle Scholar
  24. García X, Jones AG (2005) A new methodology for the acquisition and processing of audio-magnetotelluric (AMT) data in the AMT dead band. Geophysics 70(5):G119–G126CrossRefGoogle Scholar
  25. García X, Jones AG (2008) Robust processing of magnetotelluric data in the AMT dead band using the continuous wavelet transform. Geophysics 73(6):F223–F234CrossRefGoogle Scholar
  26. Gubbins D, Herrero-Bervera E (eds) (2007) Encyclopedia of geomagnetism and paleomagnetism. Springer, BerlinGoogle Scholar
  27. Helliwell RA (2006) Whistlers and related ionospheric phenomena. Dover, MineolaGoogle Scholar
  28. Hulot G, Balogh A, Christensen UR, Constable C, Mandea M, Olsen N (eds) (2010) Terrestrial magnetism. Space science series of ISSI. Springer, BerlinGoogle Scholar
  29. Hundhausen AJ (1995) The solar wind. In: Kivelson MG, Russell CT (eds) Introduction to space physics. Cambridge University Press, CambridgeGoogle Scholar
  30. Jackman CH, Marsh DR, Vitt FM, Garcia RR, Fleming EL, Labow GJ, Randall CE, López-Puertas M, Funke B, von Clarmann T, Stiller GP (2008) Short- and medium-term atmospheric constituent effects of very large solar proton events. Atmos Chem Phys 8(3):765–785CrossRefGoogle Scholar
  31. Jacobs JA (1987) Geomagnetism. Academic Press, New YorkGoogle Scholar
  32. Kelley MC (2009) The Earth’s ionosphere: plasma physics and electrodynamics, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  33. Kivelson MG, Russell CT (eds) (1995) Introduction to space physics. Cambridge University Press, CambridgeGoogle Scholar
  34. Knipp DJ, Biesecker DA (2015) Changing of the guard: Satellite will warn Earth of solar storms. EOS 96Google Scholar
  35. Kono M (ed) (2007) Geomagnetism, treatise on geophysics, vol 5, 1st edn. Elsevier, AmsterdamGoogle Scholar
  36. Madden T, Thompson W (1965) Low-frequency electromagnetic oscillations of the Earth-ionosphere cavity. Rev Geophys 3(2):211CrossRefGoogle Scholar
  37. Matsushita S, Campbell WH (eds) (1967) Physics of geomagnetic phenomena, vol 94. Academic Press, New YorkGoogle Scholar
  38. McIlwain CE (1961) Coordinates for mapping the distribution of magnetically trapped particles. J Geophys Res 66(11):3681–3691CrossRefGoogle Scholar
  39. McNeill JD, Labson VF (1991) Geological mapping using VLF radio fields. In: Nabighian MN (ed) Electromagnetic methods in applied geophysics. Society of Exploration Geophysicists, TulsaGoogle Scholar
  40. McPherron R (2005) Magnetic pulsations: their sources and relation to solar wind and geomagnetic activity. Surv Geophys 26(5):545–592CrossRefGoogle Scholar
  41. Millan RM, Thorne RM (2007) Review of radiation belt relativistic electron losses. J Atmos Solar Terr Phys 69(3):362–377CrossRefGoogle Scholar
  42. Nabighian MN (ed) (1988) Electromagnetic methods in applied geophysics. Voume 1, theory. Society of Exploration GeophysicistsGoogle Scholar
  43. Nabighian MN (ed) (1991) Electromagnetic methods in applied geophysics. Volume 2, Application, Parts A and B, Society of Exploration GeophysicistsGoogle Scholar
  44. Nickolaenko A, Hayakawa M (2014) Schumann resonance for Tyros. Springer, TokyoCrossRefGoogle Scholar
  45. Nickolaenko AP, Hayakawa M (2002) Resonances in the Earth-ionosphere cavity. Kluwer, DordrechtGoogle Scholar
  46. Nobes DC (1996) Troubled waters: environmental applications of electrical and electromagnetic methods. Surv Geophys 17(4):393–454CrossRefGoogle Scholar
  47. Olsen N (2007) Natural sources for electromagnetic induction studies. In: Gubbins D, Herrero-Bervera E (eds) Encyclopedia of geomagnetism and paleomagnetism. Springer, pp 696–700 (563)Google Scholar
  48. Olsen N, Kuvshinov A (2004) Modeling the ocean effect of geomagnetic storms. Earth Planets Space 56(5):525–530CrossRefGoogle Scholar
  49. Olsen N, Hulot G, Sabaka TJ (2010) Sources of the geomagnetic field and the modern data that enable their investigation. In: Freeden W, Nashed MZ, Sonar T (eds) Handbook of geomathematics. Springer, BerlinGoogle Scholar
  50. Pasko VP (2010) Recent advances in theory of transient luminous events. J Geophys Res 115:A00E35Google Scholar
  51. Pedersen L, Bastani M, Dynesius L (2006) Some characteristics of the electromagnetic field from radio transmitters in Europe. Geophysics 71(6):G279–G284CrossRefGoogle Scholar
  52. Pellerin L (2002) Applications of electrical and electromagnetic methods for environmental and geotechnical investigations. Surv Geophys 23(2–3):101–132CrossRefGoogle Scholar
  53. Pozzo M, Davies C, Gubbins D, Alfè D (2012) Thermal and electrical conductivity of iron at Earth’s core conditions. Nature 485(7398):355–358CrossRefGoogle Scholar
  54. Reeves GD, Spence HE, Henderson MG, Morley SK, Friedel RHW, Funsten HO, Baker DN, Kanekal SG, Blake JB, Fennell JF, Claudepierre SG, Thorne RM, Turner DL, Kletzing CA, Kurth WS, Larsen BA, Niehof JT (2013) Electron acceleration in the heart of the van Allen radiation belts. Science 341(6149):991–994CrossRefGoogle Scholar
  55. Rodger CJ (1999) Red sprites, upward lightning, and VLF perturbations. Rev Geophys 37(3):317CrossRefGoogle Scholar
  56. Rodi W, Mackie RL (2001) Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics 66(1):174–187CrossRefGoogle Scholar
  57. Rodi W, Mackie RL (2012) The inverse problem. In: Chave AD, Jones AG (eds) The magnetotelluric method. Cambridge University Press, CambridgeGoogle Scholar
  58. Russell CT (1995) A brief history of solar-terrestrial physics. In: Kivelson MG, Russell CT (eds) Introduction to space physics. Cambridge University Press, CambridgeGoogle Scholar
  59. Rycroft MJ, Harrison RG (2012) Electromagnetic atmosphere-plasma coupling: the global atmospheric electric circuit. Space Sci Rev 168(1–4):363–384CrossRefGoogle Scholar
  60. Sabaka TJ, Hulot G, Olsen N (2010) Mathematical properties relevant to geomagnetic field modeling. Handbook of geomathematics. Springer, Berlin, pp 503–538CrossRefGoogle Scholar
  61. Shvets A, Hayakawa M (2011) Global lightning activity on the basis of inversions of natural ELF electromagnetic data observed at multiple stations around the world. Surv Geophys 32(6):705–732CrossRefGoogle Scholar
  62. Simões F, Pfaff R, Freudenreich H (2011) Satellite observations of Schumann resonances in the Earth’s ionosphere. Geophysical Res Lett 38. doi: 10.1029/2011GL049668
  63. Simpson F, Bahr K (2005) Practical magnetotellurics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  64. Siripunvaraporn W (2012) Three-dimensional magnetotelluric inversion: an introductory guide for developers and users. Surv Geophys 33(1):5–27CrossRefGoogle Scholar
  65. Siscoe G (2011) Aspects of global coherence of magnetospheric behavior. J Atmos Solar Terr Phys 73(4):402–419CrossRefGoogle Scholar
  66. Surkov V, Hayakawa M (2014) Ultra and extremely low frequency electromagnetic fields. Springer, BerlinCrossRefGoogle Scholar
  67. Tezkan B, Saraev A (2008) A new broadband radiomagnetotelluric instrument: applications to near surface investigations. Near Surface GeophysGoogle Scholar
  68. Torr DG (1979) Ionospheric chemistry. Rev Geophys 17(4):510–521CrossRefGoogle Scholar
  69. Vozoff K (1991) The magnetotelluric method. In: Nabighian MN (ed) Electromagnetic methods in applied geophysics. Society of Exploration Geophysicists, Tulsa, pp 641–711CrossRefGoogle Scholar
  70. Weidelt P, Chave AD (2012) The magnetotelluric response function. In: Chave AD, Jones AG (eds) The magnetotelluric method. Cambridge University Press, CambridgeGoogle Scholar
  71. Whitley T, Füllekrug M, Rycroft M, Bennett A, Wyatt F, Elliott D, Heinson G, Hitchman A, Lewis A, Sefako R, Fourie P, Dyers J, Thomson A, Flower S (2011) Worldwide extremely low frequency magnetic field sensor network for sprite studies. Radio Sci 46. doi: 10.1029/2010RS004523
  72. Williams ER (1994) Global circuit response to seasonal variations in global surface air temperature. Mon Weather Rev 122(8):1917–1929CrossRefGoogle Scholar
  73. Williams ER (2001) Sprites, elves and glow discharge tubes. Phys TodayGoogle Scholar
  74. Williams ER (2009) CTR Wilson versus GC Simpson: fifty years of controversy in atmospheric electricity. Atmos Res 91(2–4):259–271CrossRefGoogle Scholar
  75. Williams ER (2010) Origin and context of C. T. R. Wilson’s ideas on electron runaway in thunderclouds. J Geophys Res Space Phys 115. doi: 10.1029/2009JA014581
  76. Williams ER, Mushtak VC, Boldi R, Dowden RL, Kawasaki ZI (2007) Sprite lightning heard round the world by Schumann resonance methods. Radio Sci 42. doi: 10.1029/2006RS003498
  77. Zacher G, Tezkan B, Neubauer FM, Hordt A, Müller I (1996) Radiomagnetotellurics, a powerful tool for waste site exploration. Eur J Environ Eng Geophys 1(2):139–160Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Institute of Geophysics and Planetary Physics, Scripps Institution of OceanographyUniversity of California at San DiegoLa JollaUSA

Personalised recommendations