Advertisement

Surveys in Geophysics

, Volume 36, Issue 6, pp 803–830 | Cite as

Ultra-high-Degree Surface Spherical Harmonic Analysis Using the Gauss–Legendre and the Driscoll/Healy Quadrature Theorem and Application to Planetary Topography Models of Earth, Mars and Moon

  • Moritz RexerEmail author
  • Christian Hirt
Article

Abstract

In geodesy and geophysics, spherical harmonic techniques are popular for modelling topography and potential fields with ever-increasing spatial resolution. For ultra-high-degree spherical harmonic modelling, i.e. degree 10,000 or more, classical algorithms need to be extended to avoid under- or overflow problems associated with the computation of associated Legendre functions (ALFs). In this work, two quadrature algorithms—the Gauss–Legendre (GL) quadrature and the quadrature following Driscoll/Healy (DH)—and their implementation for the purpose of ultra-high (surface) spherical harmonic analysis of spheroid functions are reviewed and modified for application to ultra-high degree. We extend the implementation of the algorithms in the SHTOOLS software package (v2.8) by (1) the X-number (or Extended Range Arithmetic) method for accurate computation of ALFs and (2) OpenMP directives enabling parallel processing within the analysis. Our modifications are shown to achieve feasible computation times and a very high precision: a degree-21,600 band-limited (=frequency limited) spheroid topographic function may be harmonically analysed with a maximum space-domain error of \(3 \times 10^{-5}\) and \(5 \times 10^{-5}\) m in 6 and 17 h using 14 CPUs for the GL and for the DH quadrature, respectively. While not being inferior in terms of precision, the GL quadrature outperforms the DH algorithm in terms of computation time. In the second part of the paper, we apply the modified quadrature algorithm to represent for—the first time—gridded topography models for Earth, Moon and Mars as ultra-high-degree series expansions comprising more than 2 billion coefficients. For the Earth’s topography, we achieve a resolution of harmonic degree 43,200 (equivalent to ~500 m in the space domain), for the Moon of degree 46,080 (equivalent to ~120 m) and Mars to degree 23,040 (equivalent to ~460 m). For the quality of the representation of the topographic functions in spherical harmonics, we use the residual space-domain error as an indicator, reaching a standard deviation of 3.1 m for Earth, 1.9 m for Mars and 0.9 m for Moon. Analysing the precision of the quadrature for the chosen expansion degrees, we demonstrate limitations in the implementation of the algorithms related to the determination of the zonal coefficients, which, however, do not exceed 3, 0.03 and 1 mm in case of Earth, Mars and Moon, respectively. We investigate and interpret the planetary topography spectra in a comparative manner. Our analysis reveals a disparity between the topographic power of Earth’s bathymetry and continental topography, shows the limited resolution of altimetry-derived depth (Earth) and topography (Moon, Mars) data and detects artefacts in the SRTM15 PLUS data set. As such, ultra-high-degree spherical harmonic modelling is directly beneficial for global inspection of topography and other functions given on a sphere. As a general conclusion, our study shows that ultra-high-degree spherical harmonic modelling to degree ~46,000 has become possible with adequate accuracy and acceptable computation time. Our software modifications will be freely distributed to fill a current availability gap in ultra-high-degree analysis software.

Keywords

Spherical harmonic analysis Quadrature Gauss–Legendre Driscoll/Healy Topography Digital elevation model Earth Mars Moon 

Notes

Acknowledgments

This study was supported by the Australian Research Council (Grant DP12044100) and through funding from Curtin University’s Office of Research and Development. Further, it was created with the support of the Technische Universität München—Institute for Advanced Study, funded by the German Excellence Initiative. We gratefully acknowledge the thorough work of Mark Wieczoreck who developed SHTOOLS in the first place and distributes the code freely to the community. We also want to thank all the colleagues who were involved in the construction or contributed to any of the planetary topography data sets used in this work.

References

  1. Abrykosov O, Förste C, Gruber C, Shako R, Barthelmes F (2012) Harmonic analysis of the DTU10 global gravity anomalies. In: Abbasi A, Giesen N (eds) EGU General Assembly conference abstracts, vol 14, p 4945Google Scholar
  2. Andersen O, Knudsen P, Kenyon S, Factor J, Holmes S (2013) The dtu13 global marine gravity field—first evaluation. Technical report, DTU Space - National Space InstituteGoogle Scholar
  3. Arabelos D, Tscherning C (1998) The use of least squares collocation method in global gravity field modeling. Phys. Chem. Earth 23(1):1–12. doi: 10.1016/S0079-1946(97)00234-6 CrossRefGoogle Scholar
  4. Balmino G, Vales N, Bonvalot S, Briais A (2012) Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies. J Geodesy 86(7):499–520. doi: 10.1007/s00190-011-0533-4 CrossRefGoogle Scholar
  5. Bartusch M, Berg H, Siebertz O (2008) The TanDEM-X Mission. In: 7th European conference on synthetic aperture radar (EUSAR), pp 1–4Google Scholar
  6. Becker J, Sandwell D, Smith W, Braud J, Binder B, Depner J, Fabre D, Factor J, Ingalls S, Kim SH, Ladner R, Marks K, Nelson S, Pharaoh A, Trimmer R, Von Rosenberg J, Wallace G, Weatherall P (2009) Global bathymetry and elevation data at 30 arc seconds resolution: Srtm30\_plus. Mar Geodesy 32(4):355–371. doi: 10.1080/01490410903297766 CrossRefGoogle Scholar
  7. Bucha B, Janák J (2013) A MATLAB-based graphical user interface program for computing functionals of the geopotential up to ultra-high degrees and orders. Comput Geosci 56:186–196CrossRefGoogle Scholar
  8. Claessens S (2006) Solutions to ellipsoidal boundary value problems for gravity field modelling. PhD thesis, Curtin University of TechnologyGoogle Scholar
  9. Claessens S, Hirt C (2013) Ellipsoidal topographic potential—new solutions for spectral forward gravity modelling of topography with respect to a reference ellipsoid. J Geophys Res 118(11):5991–6002. doi: 10.1002/2013JB010457 CrossRefGoogle Scholar
  10. Colombo O (1981) Numerical methods for harmonic analysis on the sphere. Technical report. Report no. 310, The Ohio State UniversityGoogle Scholar
  11. Dassios G (2012) Ellipsoidal harmonics. Cambridge University Press, Cambridge. doi: 10.1017/CBO9781139017749 CrossRefGoogle Scholar
  12. Driscoll J, Healy D (1994) Computing Fourier transforms and convolutions on the 2-sphere. Adv. Appl. Math. 15(2):202–250. doi: 10.1006/aama.1994.1008 CrossRefGoogle Scholar
  13. ESA (1999) Gravity field and steady-state ocean circulation mission. Report for the mission selection of the four candidate earth explorer missions (ESA SP-1233(1)), European Space AgencyGoogle Scholar
  14. Farr T, Rosen P, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada K, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The shuttle radar topography mission. Rev Geophys 45:RG2004. doi: 10.1029/2005RG000183 Google Scholar
  15. Fecher T, Pail R, Gruber T (2013) Global gravity field modeling based on GOCE and complementary gravity data. Int J Appl Earth Obs Geoinf 35:120–127. doi: 10.1016/j.jag.2013.10.005 CrossRefGoogle Scholar
  16. Fukushima T (2012) Numerical computation of spherical harmonics of arbitrary degree and order by extending exponent of floating point numbers. J Geodesy 86(4):271–285. doi: 10.1007/s00190-011-0519-2 CrossRefGoogle Scholar
  17. Fukushima T (2015) Personal communication, IUGG PragueGoogle Scholar
  18. Gruber C (2011) A study on the Fourier composition of the associated Legendre functions; suitable for applications in ultra-high resolution. Scientific technical report 11/04, German Research Centre for Geosciences (GFZ), Potsdam. doi: 10.2312/GFZ.b103-11041
  19. Gruber C, Novak P, Sebera J (2011) FFT-based high-performance spherical harmonic transformation. Stud Geophys Geod 55:489–500CrossRefGoogle Scholar
  20. Gruber C, Barthelmes F, Flechtner F, Novak P (2014) Derivation of topographic potential from global DEM models. In: Rizos C, Willis P (eds) Earth on the edge: science for a sustainable planet: proceedings of the IAG General Assembly, Melbourne, Australia, 28 June–2 July 2011, vol 139. Springer, Berlin, pp 535–542Google Scholar
  21. Hirt C, Kuhn M (2014) A band-limited topographic mass distribution generates a full-spectrum gravity field—gravity forward modelling in the spectral and spatial domain revisited. J Geophys Res Solid Earth 119(4):3646–3661. doi: 10.1002/2013JB010900 CrossRefGoogle Scholar
  22. Hirt C, Rexer M (2015) Earth 2014: 1’ shape, topography, bedrock and ice-sheet models—available as gridded data and degree 10,800 spherical harmonics. Int J Appl Earth Obs Geoinf 39:103–112. doi: 10.1016/j.jag.2015.03.001 CrossRefGoogle Scholar
  23. Hofsommer D (1957) On the expansion of a function in a series of spherical harmonics. Technical report. Report no. R344A, Computation Department of the Mathematical Centre, AmsterdamGoogle Scholar
  24. Hofsommer D, Potters M (1960) Table of Fourier coefficients of associated Legendre functions. Report r 478. knaw, Computational Department of the Mathematical Centre, AmsterdamGoogle Scholar
  25. Holmes S, Featherstone W (2002) A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalised associated Legendre functions. J Geodesy 76:279–299. doi: 10.1007/s00190-002-0216-2 CrossRefGoogle Scholar
  26. Krylov V (1962) Approximate calculation of integrals. MacMillan, New YorkGoogle Scholar
  27. Lemoine F, Smith DE, Rowlands D, Zuber M, Neumann G, Chinn D, Pavlis D (2001) An improved solution of the gravity field of Mars (GMM-2B) from Mars Global Surveyor. J Geophys Res 106:23,359–23,376CrossRefGoogle Scholar
  28. Lemoine FG, Goossens S, Sabaka TJ, Nicholas JB, Mazarico E, Rowlands DD, Loomis BD, Chinn DS, Neumann GA, Smith DE et al (2014) Grgm900c: a degree 900 lunar gravity model from grail primary and extended mission data. Geophys Res Lett 41(10):3382–3389CrossRefGoogle Scholar
  29. Marks K, Smith W, Sandwell D (2010) Evolution of errors in the altimetric bathymetry model used by Google Earth and GEBCO. Mar Geophys Res 31(3):223–238CrossRefGoogle Scholar
  30. Moritz H (1978) Least-squares collocation. Rev Geophys 16(3):421–430. doi: 10.1029/RG016i003p00421 CrossRefGoogle Scholar
  31. Moritz H (2000) Geodetic Reference System 1980. J Geodesy 74(1):128–162. doi: 10.1007/s001900050278 CrossRefGoogle Scholar
  32. Neumann G (2010) 2009 Lunar Orbiter Laser Altimeter raw data set, lro-l-lola-4-gdr-v1.0, pds. Technical report, NASAGoogle Scholar
  33. Pail R, Goiginger H, Schuh W, Höck E, Brockmann J, Fecher T, Mayer-Gürr T, Kusche J, Jäggi A, Rieser D, Gruber T (2011) Combination of GOCE data with complementary gravity field information (GOCO). In: Proceedings of 4th international GOCE user workshop, Munich, 31 March 2011Google Scholar
  34. Rummel R, Rapp R, Sünkel H, Tscherning C (1988) Comparisons of global topographic/isostatic models to the Earth’s observed gravity field. OSU report 388, Ohio State UniversityGoogle Scholar
  35. Sandwell DT, Müller RD, Smith WH, Garcia E, Francis R (2014) New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346(6205):65–67CrossRefGoogle Scholar
  36. Smith WH, Sandwell DT (1994) Bathymetric prediction from dense satellite altimetry and sparse shipboard bathymetry. J Geophys Res Solid Earth (1978–2012) 99:21803–21824CrossRefGoogle Scholar
  37. Smith DE, Zuber M, Neumann G, Guinness E, Slavney S (2003) Mars global surveyor laser altimeter mission experiment gridded data record (mgs-m-mola-5-megdr-l3-v1.0). Technical report, NASA Planetary Data SystemGoogle Scholar
  38. Smith DE, Zuber M, Jackson G, Cavanaugh J, Neumann G, Riris H, Sun X, Zellar R, Coltharp C, Connelly J, Katz R, Kleyner I, Liiva P, Matuszeski A, Mazarico E, McGarry J, Novo-Gradac AM, Ott M, Peters C, Ramos-Izquierdo L, Ramsey L, Rowlands D, Schmidt S, Scott I VStanley, Shaw G, Smith J, Swinski JP, Torrence M, Unger G, Yu A, Zagwodzki T (2010) The Lunar Orbiter Laser Altimeter investigation on the Lunar Reconnaissance Orbiter mission. Space Sci Rev 150(1–4):209–241. doi: 10.1007/s11214-009-9512-y CrossRefGoogle Scholar
  39. Sneeuw N (1994) Global spherical harmonic analysis by least-squares and numerical quadrature methods in historical perspective. Gepohys J Int 118:707–716CrossRefGoogle Scholar
  40. Tachikawa T, Hato M, Kaku M, Iwasaki A (2011) Characteristics of ASTER GDEM version 2. In: IEEE international geoscience and remote sensing symposium (IGARSS). IEEE, pp 3657–3660Google Scholar
  41. Torge W (2001) Geodesy, 3rd edn. Walter de Gruyter, BerlinCrossRefGoogle Scholar
  42. Walker JS (1996) Fast Fourier transforms, vol 24. CRC Press, Boca RatonGoogle Scholar
  43. Wieczorek M (2007) Gravity and topography of the terrestrial planets. Treatise Geophys 10:165–206. doi: 10.1016/B978-044452748-6/00156-5 CrossRefGoogle Scholar
  44. Wieczorek M (2015) Gravity and topography of the terrestrial planets. In: Schubert G (ed) Treatise Geophys, vol 10, 2nd edn. Elsevier, Oxford, pp 153–193. doi: 10.1016/B978-0-444-53802-4.00169-X
  45. Wood C, Anderson L (1978) New morphometric data for fresh lunar craters. Lun Planet Sci Conf Proc 9:3669–3689Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Institute for Astronomical and Physical GeodesyTechnische Universität MünchenMunichGermany
  2. 2.Institute for Advanced StudyTechnische Universität MünchenGarchingGermany
  3. 3.Western Australian Geodesy Group, Department of Spatial Sciences, The Institute for Geophysical ResearchCurtin University of TechnologyPerthAustralia

Personalised recommendations