Surveys in Geophysics

, Volume 37, Issue 2, pp 453–470 | Cite as

What Can be Expected from the GRACE-FO Laser Ranging Interferometer for Earth Science Applications?

  • Frank FlechtnerEmail author
  • Karl-Hans Neumayer
  • Christoph Dahle
  • Henryk Dobslaw
  • Elisa Fagiolini
  • Jean-Claude Raimondo
  • Andreas Güntner


The primary objective of the gravity recovery and climate experiment follow-on (GRACE-FO) satellite mission, due for launch in August 2017, is to continue the GRACE time series of global monthly gravity field models. For this, evolved versions of the GRACE microwave instrument, GPS receiver, and accelerometer will be used. A secondary objective is to demonstrate the effectiveness of a laser ranging interferometer (LRI) in improving the satellite-to-satellite tracking measurement performance. In order to investigate the expected enhancement for Earth science applications, we have performed a full-scale simulation over the nominal mission lifetime of 5 years using a realistic orbit scenario and error assumptions both for instrument and background model errors. Unfiltered differences between the synthetic input and the finally recovered time-variable monthly gravity models show notable improvements with the LRI, on a global scale, of the order of 23 %. The gain is realized for wavelengths smaller than 240 km in case of Gaussian filtering but decreases to just a few percent when anisotropic filtering is applied. This is also confirmed for some typical regional Earth science applications which show randomly distributed patterns of small improvements but also degradations when using DDK4-filtered LRI-based models. Analysis of applied error models indicates that accelerometer noise followed by ocean tide and non-tidal mass variation errors are the main contributors to the overall GRACE-FO gravity model error. Improvements in these fields are therefore necessary, besides optimized constellations, to make use of the increased LRI accuracy and to significantly improve gravity field models from next-generation gravity missions.


GRACE GRACE-FO Time-variable gravity modeling Satellite-to-satellite tracking 



The authors thank BMBF (German Ministry for Education and Research), BMWi (German Federal Ministry for Economics and Technology), HGF (German Helmholtz Foundation) and DLR (German Aerospace Center) for providing funding and in kind contribution for implementation of the German GRACE-FO mission elements. The paper also arises from the ISSI (International Space Science Institute, Bern, Switzerland) Workshop on Remote Sensing and Water Resources in October 2014.

Compliance with Ethical Standard

Conflict of interest

The authors certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.


  1. Bandikova T, Flury J (2014) Improvement of the GRACE star camera data based on the revision of the combination method. Adv Space Res 54:1818–1827. doi: 10.1016/j.asr.2014.07.004 CrossRefGoogle Scholar
  2. Bandikova T, Meyer U, Klinger B, Tregoning P, Flury J, Mayer-Gürr T (2014) Improved star camera attitude data and their effect on the gravity field. In: Proceedings of the GRACE science team meeting. Last time visited August 4, 2015, German Research Centre for Geosciences, Potsdam, Germany, September 29–October 1, 2014
  3. Bergmann I, Dobslaw H (2012) Short-term transport variability of the Antarctic Circumpolar Current from satellite gravity observations. J Geophys Res (Oceans) 117(C16):5044. doi: 10.1029/2012JC007872 Google Scholar
  4. Cazenave A, Dominh K, Guinehut S, Berthier E, Llovel W, Ramillien G, Ablain M, Larnicol G (2009) Sea level budget over 2003–2008: a reevaluation from GRACE space gravimetry, satellite altimetry and Argo. Global Planet Change 65:83–88CrossRefGoogle Scholar
  5. Dahle C, Flechtner F, König R, Michalak G, Neumayer KH, Gruber C, König D (2014) GFZ RL05: an improved time-series of monthly GRACE gravity field solutions. In: Flechtner F, Sneeuw N, Schuh W-D (eds) Observation of the system earth from space—CHAMP, GRACE, GOCE and future missions (GEOTECHNOLOGIEN science report; 20; advanced technologies in earth sciences). Springer, Berlin, pp 29–39. doi: 10.1007/978-3-642-32135-1 Google Scholar
  6. Dobslaw H, Bergmann I, Dill R, Forootan E, Klemann V, Kusche J, Sasgen I (2015a) The updated ESA Earth system model for future gravity mission simulation studies. J Geodesy. doi: 10.1007/s00190-014-0787-8 Google Scholar
  7. Dobslaw H, Bergmann-Wolf I, Forootan E, Dahle C, Mayer-Gürr T, Kusche J, Flechtner F (2015b) Modeling of present-day atmosphere and ocean non-tidal de-aliasing errors for future gravity mission simulations. J Geod (submitted)Google Scholar
  8. Elsaka B, Raimondo JC, Brieden P, Reubelt T, Kusche J, Flechtner F, Iran Pour S, Sneeuw N, Müller J (2014) Comparing seven candidate mission configurations for temporal gravity field retrieval through full-scale numerical simulation. J Geodesy 88:31–43. doi: 10.1007/s00190-013-0665-9 CrossRefGoogle Scholar
  9. Flechtner F, Dobslaw H, Fagiolini E (2014) AOD1B product description document for product release 05 (Rev. 4.2, May 20, 2014).
  10. Flechtner F, Morton P, Watkins M, Webb F (2015) Status of the GRACE follow-on mission. In: Proceedings of the international association of geodesy symposia gravity, geoid and height system (2012, Venice, Italy), IAGS-D-12-00141Google Scholar
  11. Flury J, Bettadpur S, Tapley BD (2008) Precise accelerometry onboard the GRACE gravity field satellite mission. Adv Space Res 42:1414–1423. doi: 10.1016/j.asr.2008.05.004 CrossRefGoogle Scholar
  12. Förste C, Schmidt R, Stubenvoll R, Flechtner F, Meyer U, König R, Neumayer H, Biancale R, Lemoine J, Bruinsma S, Loyer S, Barthelmes F, Esselborn S (2008) The GeoForschungsZentrum Potsdam/Groupe de Recherche de Geodesie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGENGL04C. J Geodesy 82:331–346CrossRefGoogle Scholar
  13. Gruber Th, Bamber JL, Bierkens MFP, Dobslaw H, Murböck M, Thomas M, van Beek LPH, van Dam T, Vermeersen LLA, Visser PNAM (2011) Simulation of the time-variable gravity field by means of coupled geophysical models. Earth Syst Sci Data 3(1):19–35. doi: 10.5194/essd-3-19-2011 CrossRefGoogle Scholar
  14. Hedin AE (1987) MSIS86 thermospheric model. J Geophys Res. doi: 10.1029/JA092iA05p04649 Google Scholar
  15. Knocke P, Ries J, Tapley B (1988) Earth radiation pressure effects on satellites. In: Proceedings of the AIAA/AAS astrodynamics specialist conference 1988, Washington DC, USA, pp 577–586. doi: 10.2514/6.1988-4292
  16. Kusche J (2007) Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J Geodesy 81:733–749. doi: 10.1007/s00190-007-0143-3 CrossRefGoogle Scholar
  17. Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998) The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96. NASA/TP-1998-206861, 1998Google Scholar
  18. Loomis BD, Nerem RS, Luthcke SB (2012) Simulation study of a follow-on gravity mission to GRACE. J Geodesy 86:319–335. doi: 10.1007/s00190-011-0521-8 CrossRefGoogle Scholar
  19. Ray R (2008) GOT4.7 (private communication). Extension of Ray R (1999) A global ocean tide model from Topex/Poseidon altimetry GOT99.2. NASA technical memo 209478, Sept 1999Google Scholar
  20. Reigber C, Schmidt R, Flechtner F, König R, Meyer U, Neumayer KH, Schwintzer P, Zhu SY (2005) An earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. J Geodyn 39:1–10CrossRefGoogle Scholar
  21. Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002. doi: 10.1038/nature08238 CrossRefGoogle Scholar
  22. Sasgen I, Dobslaw H, Martinec Z, Thomas M (2010) Satellite gravimetry observation of Antarctic snow accumulation related to ENSO. Earth Planet Sci Lett 299:352–358. doi: 10.1016/j.epsl.2010.09.015 CrossRefGoogle Scholar
  23. Savcenko R, Bosch W (2008) EOT08a—empirical ocean tide model from multi-mission satellite altimetry, report no. 81. Deutsches Geodätisches Forschungsinstitut (DGFI), MünchenGoogle Scholar
  24. Scanlon BR, Longuevergne L, Long D (2012) Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resour Res 48:4520. doi: 10.1029/2011WR011312 Google Scholar
  25. Shako R, Förste C, Abrikosov O, Bruinsma SL, Marty JC, Lemoine JM, Flechtner F, Neumayer KH, Dahle C (2014) EIGEN-6C: a high-resolution global gravity combination model including GOCE data. In: Flechtner F et al (eds) Observation of the system earth from space—CHAMP, GRACE, GOCE and future missions, advanced technologies in earth sciences. Springer, Berlin. doi: 10.1007/978-3-642-32135-1_20 Google Scholar
  26. Sheard B, Heinzel G, Danzmann K, Shaddock D, Klipstein B, Folkner W (2012) Intersatellite laser ranging instrument for the GRACE follow-on mission. J Geodesy. doi: 10.1007/s00190-012-0566-3 Google Scholar
  27. Standish E (1998) JPL planetary and lunar ephemerides “DE405/LE405”. Interoffice memorandum IOM 312.F-98-048, JPL, Los Angeles, USA, 26 Aug 1998Google Scholar
  28. Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33:L08402. doi: 10.1029/2005GL025285 Google Scholar
  29. Tapley B, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:L09607. doi: 10.1029/2004GL019920 CrossRefGoogle Scholar
  30. Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12):30205–30229. doi: 10.1029/98JB02844 CrossRefGoogle Scholar
  31. Wang L, Shum CK, Simons FJ, Tapley B, Dai C (2012) Coseismic and postseismic deformation of the 2011 Tohoku-Oki earthquake constrained by GRACE gravimetry. Geophys Res Lett 39:7301. doi: 10.1029/2012GL051104 Google Scholar
  32. Wickert J, Michalak G, Schmidt T, Beyerle G, Cheng C, Healy S (2009) GPS radio occultation: results from CHAMP, GRACE and FORMOSAT-3/COSMIC. Terr Atmos Ocean Sci 20:35–50CrossRefGoogle Scholar
  33. Wouters B, Bonin JA, Chambers DP, Riva REM, Sasgen I, Wahr J (2014) GRACE, time-varying gravity, Earth system dynamics and climate change. Rep Prog Phys. doi: 10.1088/0034-4885/77/11/116801 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Frank Flechtner
    • 1
    Email author
  • Karl-Hans Neumayer
    • 1
  • Christoph Dahle
    • 1
  • Henryk Dobslaw
    • 1
  • Elisa Fagiolini
    • 1
  • Jean-Claude Raimondo
    • 2
  • Andreas Güntner
    • 3
  1. 1.Department 1 “Geodesy and Remote Sensing”GFZ German Research Center for GeosciencesPotsdamGermany
  2. 2.SpaceTech GmbHImmenstaadGermany
  3. 3.Department 5 “Earth Surface Processes”GFZ German Research Center for GeosciencesPotsdamGermany

Personalised recommendations