Surveys in Geophysics

, Volume 36, Issue 4, pp 513–548 | Cite as

Evaluating Topographic Effects on Ground Deformation: Insights from Finite Element Modeling

  • Erika Ronchin
  • Adelina GeyerEmail author
  • Joan Martí


Ground deformation has been demonstrated to be one of the most common signals of volcanic unrest. Although volcanoes are commonly associated with significant topographic relief, most analytical models assume the Earth’s surface as flat. However, it has been confirmed that this approximation can lead to important misinterpretations of the recorded surface deformation data. Here we perform a systematic and quantitative analysis of how topography may influence ground deformation signals generated by a spherical pressure source embedded in an elastic homogeneous media and how these variations correlate with the different topographic parameters characterizing the terrain form (e.g., slope, aspect, curvature). For this, we bring together the results presented in previous published papers and complement them with new axisymmetric and 3D finite element (FE) model results. First, we study, in a parametric way, the influence of a volcanic edifice centered above the pressure source axis. Second, we carry out new 3D FE models simulating the real topography of three different volcanic areas representative of topographic scenarios common in volcanic regions: Rabaul caldera (Papua New Guinea) and the volcanic islands of Tenerife and El Hierro (Canary Islands). The calculated differences are then correlated with a series of topographic parameters. The final aim is to investigate the artifacts that might arise from the use of half-space models at volcanic areas due to diverse topographic features (e.g., collapse caldera structures, prominent central edifices, large landslide scars).


Topographic effects Volcano deformation FE models Rabaul Tenerife El Hierro 



This research was partially funded by the European Commission (FP7 Theme: ENV.2011.1.3.3-1; Grant 282759: “VUELCO”). AG is grateful for her Juan de la Cierva Grant (JCI-2010-06092) and her Ramón y Cajal Grant (RYC-2012-11024). The Editor in Chief, Prof Michael J. Rycroft, Giuseppe De Natale and two anonymous reviewers are thanked for their thorough and constructive reviews, which resulted in substantial improvements to this paper.

Supplementary material

10712_2015_9325_MOESM1_ESM.jpg (2.3 mb)
Supplementary material 1 (JPEG 2395 kb)
10712_2015_9325_MOESM2_ESM.jpg (1.4 mb)
Supplementary material 2 (JPEG 1455 kb)
10712_2015_9325_MOESM3_ESM.jpg (903 kb)
Supplementary material 3 (JPEG 903 kb)


  1. Ablay GJ, Martí J (2000) Stratigraphy, structure, and volcanic evolution of the Pico Teide-Pico Viejo formation, Tenerife, Canary Islands. J Volcanol Geotherm Res 103:175–208. doi: 10.1016/S0377-0273(00)00224-9 CrossRefGoogle Scholar
  2. Albani M, Klinkenberg B, Anderson DW, Kimmins JP (2004) The choice of window size in approximating topographic surfaces from digital elevation models. Int J Geogr Inf Sci 18:577–593CrossRefGoogle Scholar
  3. Ancochea E, Fuster JM, Ibarrola E, Cendrero A, Coello J, Hernan F, Cantagrel JM, Jamond C (1990) Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new K–Ar data. J Volcanol Geotherm Res 44:231–249CrossRefGoogle Scholar
  4. Antonic O, Legovic T (1999) Estimating the direction of an unknown air pollution source using a digital elevation model and a sample of deposition. Ecol Mod 124:85–95. doi: 10.1016/S0304-3800(99)00149-0 CrossRefGoogle Scholar
  5. Araña V, Ortiz R (1991) The Canary Islands: tectonics, magmatism and geodynamic framework. In: Kampunzu AB, Lubala RT (eds) Magmatism in extensional structural settings the phanerozoic African Plate. Springer, Germany, pp 209–249CrossRefGoogle Scholar
  6. Bai C-Y, Greenhalgh S (2005) 3D multi-step travel time tomography: imaging the local, deep velocity structure of Rabaul volcano, Papua New Guinea. Phys Earth Planet Int 151:259–275. doi: 10.1016/j.pepi.2005.03.009 CrossRefGoogle Scholar
  7. Beauducel F, Cornet FH (1999) Collection and three-dimensional modeling of GPS and tilt data at Merapi volcano, Java. J Geophys Res 104:725–736. doi: 10.1029/1998jb900031 CrossRefGoogle Scholar
  8. Blanco-Montenegro I, Nicolosi I, Pignatelli A, García A, Chiappini M (2011) New evidence about the structure and growth of ocean island volcanoes from aeromagnetic data: the case of Tenerife, Canary Islands. J Geophys Res. doi: 10.1029/2010JB007646 Google Scholar
  9. Bonaccorso A, Cianetti S, Giunchi C, Trasatti E, Bonafede M, Boschi E (2005) Analytical and 3-D numerical modelling of Mt. Etna (Italy) volcano inflation. Geophys J Int 163:852–862. doi: 10.1111/j.1365-246X.2005.02777.x CrossRefGoogle Scholar
  10. Bonafede M, Dragoni M, Quareni M (1986) Displacement and stress fields produced by a centre of dilation and by a pressure source in a viscoelastic half-space: application to the study of ground deformation and seismic activity at Campi Flegrei, Italy. Geophys J R Astron Soc 87:455–485CrossRefGoogle Scholar
  11. Bonafede M, Ferrari C (2009) Analytical models of deformation and residual gravity changes due to a Mogi source in a viscoelastic medium. Tectonophysics 471:4–13. doi: 10.1016/j.tecto.2008.10.006 CrossRefGoogle Scholar
  12. Carracedo JC, Rodríguez-Badiola E, Guillou H, Paterne M, Scaillet S, Pérez Torrado FJ, Paris R, Fra-Paleo U, Hansen Machín A (2007) Eruptive and structural history of Teide Volcano and rift zones of Tenerife, Canary Islands. Geol Soc Am Bull 119:1027–1051CrossRefGoogle Scholar
  13. Casagli N, Casagli N, Tibaldi A, Merri A, Del Ventisette C, Apuani T, Guerri L, Fortuny-Guasch J, Tarchi D (2009) Deformation of Stromboli Volcano (Italy) during the 2007 eruption revealed by radar interferometry, numerical modelling and structural geological field data. J Volcanol Geotherm Res 182:182–200. doi: 10.1016/j.jvolgeores.2009.01.002 CrossRefGoogle Scholar
  14. Cayol V, Cornet FH (1997) 3D mixed boundary elements for elastostatic deformation field analysis. Int J Rock Mech Min Sci 34(2):275–287CrossRefGoogle Scholar
  15. Cayol V, Cornet FH (1998) Effects of topography on the interpretation of the deformation field of prominent volcanoes—application to Etna. Geophys Res Lett 25:1979–1982. doi: 10.1029/98gl51512 CrossRefGoogle Scholar
  16. Cervelli P, Murray MH, Segall P, Aoki Y, Kato T (2001) Estimating source parameters from deformation data, with an application to the March 1997 earthquake swarm off the Izu Peninsula, Japan. J Geophys Res 106:11217–11237. doi: 10.1029/2000jb900399 CrossRefGoogle Scholar
  17. Charco M, Luzón F, Fernández J, Tiampo KF, Sánchez-Sesma FJ (2007) Three-dimensional indirect boundary element method for deformation and gravity changes in volcanic areas: application to Teide volcano (Tenerife, Canary Islands). J Geophys Res 112:B08409. doi: 10.1029/72006JB004740 Google Scholar
  18. Charco M, Galán del Sastre P (2014) Efficient inversion of 3D finite element models of volcano deformation. Geophys J Int 196:1441–1454. doi: 10.1093/gji/ggt490 CrossRefGoogle Scholar
  19. Chiodini G, Todesco M, Caliro S, Del Gaudio C, Macedonio G, Russo M (2003) Magma degassing as a trigger of bradyseismic events: the case of Phlegrean Fields (Italy). Geophys Res Lett 30(8):1434. doi: 10.1029/2002GL016790 CrossRefGoogle Scholar
  20. Currenti G, del Negro C, Ganci G (2007) Modelling ground deformation and gravity fields using finite element method: an application to Etna volcano. Geophys J Int 169(2):775–786. doi: 10.1111/j.1365-246X.2007.03380.x CrossRefGoogle Scholar
  21. Currenti G, Del Negro C, Ganci G, Williams CA (2008) Static stress changes induced by the magmatic intrusions during the 2002–2003 Etna eruption. J Geophys Res 113:B10206. doi: 10.1029/2007jb005301 CrossRefGoogle Scholar
  22. Davis PM (1983) Surface deformation associated with a dipping hydrofracture. J Geophys Res 88:5826–5834. doi: 10.1029/JB088iB07p05826 CrossRefGoogle Scholar
  23. Del Negro C, Currenti G, Scandura D (2009) Temperature-dependent viscoelastic modeling of ground deformation: application to Etna volcano during the 1993–1997 inflation period. Phys Earth Planet Int 172(3–4):299–309CrossRefGoogle Scholar
  24. De Natale G, Pingue F, Allard P, Zollo A (1991) Geophysical and geochemical modeling of the Campi Flegrei Caldera. J Volcanol Geotherm Res 48:199–222CrossRefGoogle Scholar
  25. De Natale G, Pingue F (1993) Ground deformations in collapsed caldera structures. J Volcanol Geotherm Res 57:19–38. doi: 10.1016/0377-0273(93)90029-Q CrossRefGoogle Scholar
  26. de Zeeuw-van Dalfsen E, Pedersen R, Hooper A, Sigmundsson F (2012) Subsidence of Askja caldera 2000–2009: modelling of deformation processes at an extensional plate boundary, constrained by time series InSAR analysis. J Volcanol Geotherm Res 213–214:72–82. doi: 10.1016/j.jvolgeores.2011.11.004 CrossRefGoogle Scholar
  27. Dragoni M, Magnanensi C (1989) Displacement and stress produced by a pressurized, spherical magma chamber, surrounded by a viscoelastic shell. Phys Earth Planet Int 56:316–328. doi: 10.1016/0031-9201(89)90166-0 CrossRefGoogle Scholar
  28. Dzurisin D, Johnston DA (2003) A comprehensive approach to monitoring volcano deformation as a window on the eruption cycle. Rev Geophys. doi: 10.1029/2001RG000107 Google Scholar
  29. Eff-Darwich A, Grassin O, Fernández J (2008) An Upper Limit to Ground Deformation in the Island of Tenerife, Canary Islands, for the Period 1997–2006. In: Camacho A, Díaz J, Fernández J (eds) Earth sciences and mathematics. Pageoph topical volumes. Birkhäuser Basel, pp 1049–1070. doi: 10.1007/978-3-7643-8907-9_4
  30. Evans IS (1979) An integrated system of terrain analysis and slope mapping. Final report (Report 6) on Grant DA-ERO-591-73-G0040, ‘Statistical characterizatin of altitude matrices by computer’. Department of Geography, University of Durham, EnglandGoogle Scholar
  31. Evans IS (2013) Land surface derivatives: history, calculation and further development, in geomorphometry 2013. Nanjing, ChinaGoogle Scholar
  32. Fernández J, Romero R, Carrasco D, Tiampo KF, Rodríguez-Velasco G, Aparicio A, Araña V, Gónzalez-Matesanz FJ (2005) Detection of displacements on Tenerife Island, Canaries, using radar interferometry. Geophys J Int 160:33–45. doi: 10.1111/j.1365-246X.2005.02487.x CrossRefGoogle Scholar
  33. Fernández J, Rundle JB (1994) Gravity changes and deformation due to a magmatic intrusion in a two-layered crustal model. J Geophys Res 99:2737–2746. doi: 10.1029/93jb02449 CrossRefGoogle Scholar
  34. Finlayson DM, Gudmundsson O, Itakarai I, Nishimura Y, Shimamu H (2003) Rabaul volcano, Papua New Guinea: seismic tomographic imaging of an active caldera. J Volcanol Geotherm Res 124:153–171. doi: 10.1016/S0377-0273(02)00472-9 CrossRefGoogle Scholar
  35. Florinsky IV (1998) Accuracy of local topographic variables derived from digital elevation models. Int J Geogr Inf Sci 12:47–61CrossRefGoogle Scholar
  36. Folch A, Fernández J, Rundle JB, Martí J (2000) Ground deformation in a viscoelastic medium composed of a layer overlying a half-space: a comparison between point and extended sources. Geophys J Int 140:37–50CrossRefGoogle Scholar
  37. Fukushima Y, Cayol V, Durand P (2005) Finding realistic dike models from interferometric synthetic aperture radar data: the February 2000 eruption at Piton de la Fournaise. J Geophys Res. doi: 10.1029/2004JB003268 Google Scholar
  38. Gauthier TD (2001) Detecting trends using spearman’s rank correlation coefficient. Environ Forensic 2:359–362. doi: 10.1006/enfo.2001.0061 CrossRefGoogle Scholar
  39. Geyer A, Gottsmann J (2010) The influence of mechanical stiffness on caldera deformation and implications for the 1971–1984 Rabaul uplift (Papua New Guinea). Tectonophysics 483:399–412. doi: 10.1016/j.tecto.2009.10.029 CrossRefGoogle Scholar
  40. González PJ, Samsonov S, Pepe S, Tiampo KF, Tizzani P, Casu F, Fernández J, Camacho AG, Sansosti E (2013) Magma storage and migration associated with the 2011-2012 El Hierro eruption: implications for shallow magmatic systems at oceanic island volcanoes. J Geophys Res Solid Earth 118:4361–4377. doi: 10.1002/jgrb.50289 CrossRefGoogle Scholar
  41. Gottsmann J, Wooller L, Martí J, Fernandez J, Camacho A, Gonzales P, Perez N, Rymer H (2006) Eruption precursor or business as usual? Evaluating volcanic unrest on Tenerife, Canary Islands, via ground deformation and gravimetric studies. EGU Geophys Res Abstract, 8: 03066, EGU, Vienna. SRef-ID: 1607-7962/gra/EGU06-A-0306Google Scholar
  42. Guillou H, Carracedo JC, Perez-Torrado F, Rodriguez Badiola E (1996) K–Ar ages and magnetic stratigraphy of a hotspotinduced, fast-grown oceanic island: El Hierro, Canary Islands. J Volcanol Geotherm Res 73:141–155. doi: 10.1016/0377-0273(96)00021-2 CrossRefGoogle Scholar
  43. Hautmann S, Gottsmann J, Sparks RSJ, Mattioli GS, Sacks IS, Strutt MH (2010) Effect of mechanical heterogeneity in arc crust on volcano deformation with application to Soufrière Hills Volcano, Montserrat, West Indies. J Geophys Res 115:B09203. doi: 10.1029/2009JB006909 Google Scholar
  44. Itikarai I (2008) The 3-D structure and earthquake locations at Rabaul Caldera, Papua New Guinea. Master of Philosophy Thesis. Australian National UniversityGoogle Scholar
  45. Jing L, Hudson JA (2002) Numerical methods in rock mechanics*1. Int J Rock Mech Min Sci 39:409–427CrossRefGoogle Scholar
  46. Johnson RW, Itikarai I, Patia H, McKee CO (2010) Volcanic systems of the Northeastern Gazelle Peninsula, Papua New Guinea: Synopsis, evaluation, and a model for Rabaul Volcano, Papua New Guinea. In: Rabaul Volcano Workshop Report. Papua New Guinea Department of Mineral Policy and Geohazards Management, Port Moresby, Papua New GuineaGoogle Scholar
  47. Jones RH, Stewart RC (1997) A method for determining significant structures in a cloud of earthquakes. J Geophys Res 102:8245–8254. doi: 10.1029/96JB03739 CrossRefGoogle Scholar
  48. Le Bas MJ, Rex DC, Stillman CJ (1986) The early magmatic chronology of Fuerteventura, Canary Islands. Geol Mag 123:287–298. doi: 10.1017/S0016756800034762 CrossRefGoogle Scholar
  49. Letourneur L, Peltier A, Staudacher T, Gudmundsson A (2008) The effects of rock heterogeneities on dyke paths and asymmetric ground deformation: the example of Piton de la Fournaise (Réunion Island). J Volcanol Geotherm Res 173:289–302. doi: 10.1016/j.jvolgeores.2008.01.018 CrossRefGoogle Scholar
  50. López C, Blanco MJ, Abella R, Brenes B, Cabrera Rodríguez VM, Casas B, Domínguez Cerdeña I, Felpeto A, Fernández de Villalta M, del Fresno C, García O, García-Arias MJ, García-Cañada L, Gomis Moreno A, González-Alonso E, Guzmán Pérez J, Iribarren I, López-Díaz R, Luengo-Oroz N, Meletlidis S, Moreno M, Moure D, Pereda de Pablo J, Rodero C, Romero E, Sainz-Maza S, Sentre Domingo MA, Torres PA, Trigo P, Villasante-Marcos V (2012) Monitoring the volcanic unrest of El Hierro (Canary Islands) before the onset of the 2011–2012 submarine eruption. Geophys Res Lett 39:L13303. doi: 10.1029/2012gl051846 Google Scholar
  51. Lundgren P, Berardino P, Coltelli M, Fornaro G, Lanari R, Puglisi G, Sansosti E, Tesauro M (2003) Coupled magma chamber inflation and sector collapse slip observed with synthetic aperture radar interferometry on Mt. Etna volcano. J Geophys Res 108:2247. doi: 10.1029/2001jb000657 CrossRefGoogle Scholar
  52. Lungarini L, Troise C, Meo M, De Natale G (2005) Finite element modelling of topographic effects on elastic ground deformation at Mt. Etna. J Volcanol Geotherm Res 144:257–271. doi: 10.1016/j.jvolgeores.2004.11.031 CrossRefGoogle Scholar
  53. Manconi A, Walter TR, Amelung F (2007) Effects of mechanical layering on volcano deformation. Geophys J Int 170:952–958CrossRefGoogle Scholar
  54. Manconi A, Walter TR, Manzo M, Zeni G, Tizzani P, Sansoti E, Lanari R (2010) On the effects of 3D mechanical heterogeneities at Campi Flegrei caldera, southern Italy. J Geophys Res 115:B08405. doi: 10.1029/2009JB007099 Google Scholar
  55. Marinoni LB, Pasquarè G (1994) Tectonic evolution of the emergent part of a volcanic ocean island: Lanzarote, Canary Islands. Tectonophysics 239:111–135. doi: 10.1016/0040-1951(94)90110-4 CrossRefGoogle Scholar
  56. Martí J, Gudmundsson A (2000) The Las Cañadas caldera (Tenerife, Canary Islands): an overlapping collapse caldera generated by magma-chamber migration. J Volcanol Geotherm Res 103:161–173. doi: 10.1016/S0377-0273(00)00221-3 CrossRefGoogle Scholar
  57. Martí J, Mitjavila J, Araña V (1994) Stratigraphy, structure and geochronology of the Las Cañadas caldera (Tenerife, Canary Island). Geol Mag 131:715–727. doi: 10.1017/S0016756800012838 CrossRefGoogle Scholar
  58. Masterlark T (2003) Finite element model predictions of static deformation from dislocation sources in a subduction zone: sensitivities to homogeneous, isotropic, poisson–solid, and half-space assumptions. J Geophys Res 108:2540. doi: 10.1029/2002jb002296 CrossRefGoogle Scholar
  59. Masterlark T (2007) Magma intrusion and deformation predictions: sensitivities to the Mogi assumptions. J Geophys Res. doi: 10.1029/2006JB004860 Google Scholar
  60. McKee C, Lowenstein PL, De Saint OP, Talai B, Itakarai I, Mori JJ (1984) Seismic and ground deformation crisis at Rabaul Caldera: prelude to an eruption? Bull Vol 47:397–411CrossRefGoogle Scholar
  61. McKenzie NJ, Grundy MJ, Webster R, Ringrose-Voase AJ (2008) Guidelines for surveying soil and land resources, 2nd edn. CSIRO Publishing, CollingwoodGoogle Scholar
  62. McTigue DF (1987) Elastic stress and deformation near a finite spherical magma body: resolution of the point source paradox. J Geophys Res Solid Earth 92:12931–12940. doi: 10.1029/JB092iB12p12931 CrossRefGoogle Scholar
  63. McTigue DF, Mei CC (1981) Gravity-induced stresses near topography of small slope. J Geophys Res Solid Earth 86:9268–9278. doi: 10.1029/JB086iB10p09268 CrossRefGoogle Scholar
  64. McTigue DF, Segall P (1988) Displacements and tilts from dip-slip faults and magma chambers beneath irregular surface topography. Geophys Res Lett 15:601–604. doi: 10.1029/GL015i006p00601 CrossRefGoogle Scholar
  65. McTigue DF, Stein RS (1984) Topographic amplification of tectonic displacement: implications for geodetic measurement of strain changes. J Geophys Res Solid Earth 89:1123–1131. doi: 10.1029/JB089iB02p01123 CrossRefGoogle Scholar
  66. Meo M, Tammaro U, Capuano P (2008) Influence of topography on ground deformation at Mt. Vesuvius (Italy) by finite element modelling. Int J Non-linear Mech 43:178–186. doi: 10.1016/j.ijnonlinmec.2007.12.005 CrossRefGoogle Scholar
  67. Mogi K (1958) Relations of the eruptions of various volcanoes and the deformations of the ground surface around them. Bull Earthq Res Inst Univ Tokio 36:99–134Google Scholar
  68. Mori J, McKee C (1987) Outward-dipping ring-fault structure at Rabaul Caldera as shown by earthquake locations. Science 235:193–195. doi: 10.1126/science.235.4785.193 CrossRefGoogle Scholar
  69. Mori J, McKee CO, Itikarai I, Lowenstein PL, de Saint OP (1989) Earthquakes of the Rabaul seismo-deformational crisis September 1983 to July 1985 seismicity on a ring fault. In: Latter JH (ed) Volcanic hazards: assessment and monitoring. IAVCEI Proceedings in Volcanology. Springer, New York, pp 429–462CrossRefGoogle Scholar
  70. Newman AV, Dixon TH, Ofoegbu GI, Dixon JE (2001) Geodetic and seismic constraints on recent activity at Long Valley Caldera, California: evidence for viscoelastic rheology. J Volcanol Geotherm Res 105:183–206. doi: 10.1016/S0377-0273(00)00255-9 CrossRefGoogle Scholar
  71. Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75:1135–1154Google Scholar
  72. Pascal K, Neuberg J, Rivalta E (2014) On accurately modelling surface deformation due to interacting magma chambers and dikes. Geophys J Int 196:253–278CrossRefGoogle Scholar
  73. Pennock DJ, Zebarth BJ, de Jong E (1987) Landform classification and soil distribution in hummocky terrain, Saskatchewan, Canada. Geoderma 40:297–315CrossRefGoogle Scholar
  74. Pirotti F, Tarolli P (2010) Suitability of LiDAR point density and derived landformcurvature maps for channel network extraction. Hydrol Process 24:1187–1197CrossRefGoogle Scholar
  75. Poland MR, Bürgmann R, Dzurisin D, Lisowski M, Masterlark T, Owen S, Fink J (2006) Constraints on the mechanism of long-term, steady subsidence at Medicine Lake volcano, northern California, from GPS and precise leveling. J Volcanol Geotherm Res 150:55–78. doi: 10.1016/j.jvolgeores.2005.07.007 CrossRefGoogle Scholar
  76. Pollard DD, Delaney PT, Duffield WA, Endo ET, Okamura AT (1983) Surface deformation in volcanic rift zones. Tectonophysics 94:541–584. doi: 10.1016/0040-1951(83)90034-3 CrossRefGoogle Scholar
  77. Robertson AHF, Stillman CJ (1979) Late Mesozoic sedimentary rocks of Fuerteventura, Canary Islands. Implications for West Africa continental margin evolution. J Geol Soc Lond 136:47–60. doi: 10.1144/gsjgs.136.1.0047 CrossRefGoogle Scholar
  78. Ronchin E, Masterlark T, Martí J, Saunders S, Tao W (2013) Solid modeling techniques to build 3d finite element models of volcanic systems: an example from the Rabaul caldera system, Papua New Guinea. Comput Geosci 52:325–333CrossRefGoogle Scholar
  79. Roth F (1990) Subsurface deformations in a layered elastic half-space. Geophys J Int 103:147–155. doi: 10.1111/j.1365-246X.1990.tb01759.x CrossRefGoogle Scholar
  80. Rundle JB (1978) Viscoelastic crustal deformation by finite quasi-static sources. J Geophys Res 83:5937–5945. doi: 10.1029/JB083iB12p05937 CrossRefGoogle Scholar
  81. Russo G, Giberti G (2004) Numerical modeling of surface deformations on Mt. Vesuvius volcano (Italy) in presence of asymmetric elastic heterogeneities. J Volcanol Geotherm Res 133:41–54. doi: 10.1016/s0377-0273(03)00390-1 CrossRefGoogle Scholar
  82. Saunders SJ (2001) The shallow plumbing system of Rabaul caldera: a partially intruded ring fault? Bull Volcanol 63:406–420. doi: 10.1007/s004450100159 CrossRefGoogle Scholar
  83. Saunders SJ (2005) The possible contribution of circumferential fault intrusion to caldera resurgence. Bull Volcanol 67:57–71. doi: 10.1007/s00445-004-0360-z CrossRefGoogle Scholar
  84. Thirlwall MF, Singer BS, Marriner GF (2000) 39Ar–40Ar ages and geochemistry of the basaltic shield stage of Tenerife, Canary Islands, Spain. J Volcanol Geotherm Res 103:247–297. doi: 10.1016/S0377-0273(00)00227-4 CrossRefGoogle Scholar
  85. Trasatti E, Giunchi C, Bonafede M (2003) Effects of topography and rheological layering on ground deformation in volcanic regions. J Volcanol Geotherm Res 122:89–110CrossRefGoogle Scholar
  86. Troiano A, Di Giuseppe MG, Petrillo Z, Troise C, De Natale G (2011) Ground deformation at calderas driven by fluid injection: modelling unrest episodes at Campi Flegrei (Italy). Geophys J Int 187(2):833–847. doi: 10.1111/j.1365-246X.2011.05149.x CrossRefGoogle Scholar
  87. Williams CA, Wadge G (1998) The effects of topography on magma chamber deformation models: application to Mt Etna and radar interferometry. Geophys Res Lett 25:1549–1552. doi: 10.1029/98GL01136 CrossRefGoogle Scholar
  88. Williams CA, Wadge G (2000) An accurate and efficient method for including the effects of topography in three-dimensional elastic models of ground deformation with applications to radar interferometry. J Geophys Res 105:8103–8120. doi: 10.1029/1999jb900307 CrossRefGoogle Scholar
  89. Wood JD (1996) The geomorphological characterisation of digital elevation models. PhD Thesis, University of LeicesterGoogle Scholar
  90. Yang XM, Davies PM, Dieterich JH (1988) Deformation from inflation of a dipping finite prolate spheroid in an elastic half-space as a model for volcanic stressing. J Geophys Res 93:4249–4257CrossRefGoogle Scholar
  91. Young M, Evans IS (1978) Statistical characterization of altitude matrices. Report 5 on Grant DA-ERO-591-73-G0040, ‘Statistical characterization of altitude matrices by computer’, Department of Geography, University of DurhamGoogle Scholar
  92. Yu T-T, Rundle JB, Fernández J (1996) Surface deformation due to a strike-slip fault in an elastic gravitational layer overlying a viscoelastic gravitational half-space. J Geophys Res 101:3199–3214. doi: 10.1029/95jb03118 CrossRefGoogle Scholar
  93. Zienkiewicz OC (1979) The finite element method, 3rd edn. McGraw-Hill, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Group of Volcanology, SIMGEO (UB-CSIC), Institute of Earth Sciences Jaume AlmeraICTJA-CSICBarcelonaSpain

Personalised recommendations