Advertisement

Surveys in Geophysics

, Volume 36, Issue 4, pp 571–586 | Cite as

A Comparison Between Three IMUs for Strapdown Airborne Gravimetry

  • Diogo Ayres-Sampaio
  • Richard Deurloo
  • Machiel Bos
  • Américo Magalhães
  • Luísa Bastos
Article

Abstract

Strapdown airborne gravimetry relies on the combination of an inertial measuring unit (IMU) and a global navigation satellite system (GNSS) to measure the Earth’s gravity field. Early results with navigation-grade IMUs showed similar accuracies to those obtained with scalar gravimetric systems in the down component. This paper investigates the accuracy of three IMUs used for strapdown airborne gravimetry under the same flight conditions. The three systems considered were navigation-grade IMUs, iXSea AIRINS and iMAR iNAV-FMS, and a tactical-grade Litton LN-200. The data were collected in 2010 over the Island of Madeira, Portugal, in the scope of GEOid over MADeira campaign. The coordinates and orientation of the aircraft were computed using an extended Kalman filter based on the inertial navigation approach. GNSS position and velocity observations were used to update the filter, and the gravity disturbance was considered to be a stochastic process and was part of the state vector. A new crossover point-based serial tuning was introduced to deal with the uncertainty of choosing the filter’s a priori information. The results show that with the iXSea accuracies of 2.1 and 1.6 mGal can be obtained for 1.7 and 5.0 km of spatial resolution (half-wavelength), respectively. iMAR’s results were significantly affected by a nonlinear drift, which led to lower accuracies of 4.1–5.5 mGal. Remarkably, Litton showed very consistent results and achieved an accuracy of about 4.5 mGal at 5 km of spatial resolution (half-wavelength).

Keywords

Airborne GNSS Gravimetry IMU Strapdown 

Notes

Acknowledgments

The GEOMAD campaign was funded by the European Facility For Airborne Research (EUFAR). The authors would like to express gratitude to the Service des Avions Français Instrumentés pour la Recherche en Environnement (SAFIRE) for providing iXSea’s data and to the Autonomous Systems Laboratory at Engineering School of Porto Polytechnic (LSA-ISEP) for loaning iMAR. Luís Antunes of Direcção Regional de Informação Geográfica e Ordenamento do Território (DRIGOT) is acknowledged for providing the GPS data from stations on Madeira and Porto Santo. Diogo Ayres-Sampaio was supported by a research grant of the PITVANT project funded by the Portuguese Ministry of Defense. Machiel Bos was funded by national funds through FCT in the scope of the Project UID/GEO/50019/2013 and SFRH/BPD/89923/2012.

References

  1. Bastos L, Tomé P, Cunha T, Fernandes MJ, Cunha S (2002) Gravity anomalies from airborne measurements: experiments using a low cost IMU device. In: Sideris M (ed) Gravity, geoid and geodynamics, 2000, international association of geodesy symposia, vol 123. Springer, Berlin, pp 253–258. doi: 10.1007/978-3-662-04827-6_42 CrossRefGoogle Scholar
  2. Bos M, Deurloo R, Bastos L, Magalhães A (2011) A new local geoid for Madeira using airborne gravimetry. In: AGU Fall Meeting Abstracts, vol 1. San Francisco, p 880Google Scholar
  3. Bruton A (2000) Improving the accuracy and resolution of SINS/DPGS airborne gravimetry. Ph.D. thesis, The University of CalgaryGoogle Scholar
  4. Catalão J, Sevilla MJ (2009) Mapping the geoid for Iberia and the Macaronesian Islands using multi-sensor gravity data and the GRACE geopotential model. J Geodyn 48:6–15. doi: 10.1016/j.jog.2009.03.001 CrossRefGoogle Scholar
  5. Deurloo R (2011) Development of a Kalman filter integrating system and measurement models for a low-cost strapdown airborne gravimetry system. Ph.D. thesis, Faculty of Sciences of the University of PortoGoogle Scholar
  6. Deurloo R, Bastos L, Bos M (2012) On the use of UAVs for strapdown airborne gravimetry. In: Kenyon S, Pacino MC, Marti U (eds) Geodesy for planet Earth, international association of geodesy symposia, vol 136. Springer, Berlin, pp 255–261. doi: 10.1007/978-3-642-20338-1_31 Google Scholar
  7. Farr TG et al (2007) The shuttle radar topography mission. Rev Geophys 45:RG2004. doi: 10.1029/2005RG000183 CrossRefGoogle Scholar
  8. Forsberg R, Olesen A (2010) Airborne gravity field determination. In: Xu G (ed) Sciences of geodesy—I. Springer, Berlin, pp 83–104. doi: 10.1007/978-3-642-11741-1_3 CrossRefGoogle Scholar
  9. Forsberg R, Hehl K, Bastos L, Giskehaug A, Meyer U (1997) Development of an airborne geoid mapping system for coastal oceanography (AGMASCO). In: Segawa J, Fujimoto H, Okubo S (eds) Gravity, geoid and marine geodesy, international association of geodesy symposia, vol 117. Springer, Berlin, pp 163–170. doi: 10.1007/978-3-662-03482-8_24 CrossRefGoogle Scholar
  10. Förste C et al (2014) EIGEN-6C4: the latest combined global gravity field model including GOCE data up to degree and order 1949 of GFZ Potsdam and GRGS Toulouse. In: EGU General Assembly Conference Abstracts, vol 16. Vienna, p 3707Google Scholar
  11. Gerlach C, Dorobantu R, Ackermann C, Kjørsvik NS, Boedecker G (2010) Preliminary results of a GPS/INS airborne gravimetry experiment over the German Alps. In: Mertikas SP (ed) Gravity, geoid and Earth observation, international association of geodesy symposia, vol 135. Springer, Berlin, pp 3–9. doi: 10.1007/978-3-642-10634-7_1 CrossRefGoogle Scholar
  12. Glennie C, Schwarz KP (1999) A comparison and analysis of airborne gravimetry results from two strapdown inertial/DGPS systems. J Geod 73:311–321. doi: 10.1007/s001900050248 CrossRefGoogle Scholar
  13. Glennie CL, Schwarz KP, Bruton AM, Forsberg R, Olesen AV, Keller K (2000) A comparison of stable platform and strapdown airborne gravity. J Geod 74:383–389. doi: 10.1007/s001900000082 CrossRefGoogle Scholar
  14. Goodall C (2009) Improving usability of low-cost INS/GPS navigation systems using intelligent techniques. Ph.D. thesis, The University of CalgaryGoogle Scholar
  15. Groves P (2008) Principles of GNSS, inertial, and multisensor integrated navigation systems, 1st edn. Artech House, BostonGoogle Scholar
  16. Huang Y, Olesen AV, Wu M, Zhang K (2012) SGA-WZ: a new strapdown airborne gravimeter. Sensors 12:9336–9348CrossRefGoogle Scholar
  17. Jekeli C (1994) Airborne vector gravimetry using precise, position-aided inertial measurement units. Bull Géodésique 69:1–11. doi: 10.1007/BF00807986 CrossRefGoogle Scholar
  18. Jekeli C (2001) Inertial navigation systems with geodetic applications. de Gruyter, Berlin, New York. doi: 10.1515/9783110800234 CrossRefGoogle Scholar
  19. Kwon JH, Jekeli C (2001) A new approach for airborne vector gravimetry using GPS/INS. J Geod 74:690–700. doi: 10.1007/s001900000130 CrossRefGoogle Scholar
  20. Li X (2007) Moving base INS/GPS vector gravimetry on a land vehicle. Ph.D. thesis, The Ohio State UniversityGoogle Scholar
  21. Li X (2011) Strapdown INS/DGPS airborne gravimetry tests in the Gulf of Mexico. J Geod 85:597–605. doi: 10.1007/s00190-011-0462-2 CrossRefGoogle Scholar
  22. Li X (2013) Examination of two major approximations used in the scalar airborne gravimetric system: a case study based on the LCR system. J Geod Sci 3:32–39. doi: 10.2478/jogs-2013-0004 Google Scholar
  23. Moritz H (1980) Advanced physical geodesy. Wichmann, Karlsruhe. ISBN: 0856261955Google Scholar
  24. Schwarz KP (2006) Simultaneous determination of position and gravity from INS/DGPS. In: Wissenschaftliche Arbeiten der Fachrichtung Geodaesie und Geoinformatik der Universitaet Hannover, vol 258. Hannover, pp 141–148Google Scholar
  25. Schwarz KP, Li Z (1997) An introduction to airborne gravimetry and its boundary value problems. In: Sansó F, Rummel R (eds) Geodetic boundary value problems in view of the one centimeter geoid, lecture notes in Earth sciences, vol 65. Springer, Berlin, pp 312–358. doi: 10.1007/BFb0011709 CrossRefGoogle Scholar
  26. Senobari MS (2010) New results in airborne vector gravimetry using strapdown INS/DGPS. J Geod 84:277–291. doi: 10.1007/s00190-010-0366-6 CrossRefGoogle Scholar
  27. Tomé P (2002) Integration of inertial and satellite navigation systems for aircraft attitude determination. Ph.D. thesis, Faculty of Sciences of the University of PortoGoogle Scholar
  28. Wei M, Schwarz KP (1998) Flight test results from a strapdown airborne gravity system. J Geod 72:323–332. doi: 10.1007/s001900050171 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Diogo Ayres-Sampaio
    • 1
  • Richard Deurloo
    • 1
  • Machiel Bos
    • 2
  • Américo Magalhães
    • 1
  • Luísa Bastos
    • 1
    • 3
  1. 1.Astronomical Observatory, Faculty of SciencesUniversity of PortoVila Nova de GaiaPortugal
  2. 2.Institute D. LuisUniversity of Beira InteriorCovilhãPortugal
  3. 3.Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoPortoPortugal

Personalised recommendations